[洛谷]P1037 产生数 (#图论 -1.6)(#高精度 -1.1)

题目描述

给出一个整数n(n<10^{30})n(n<1030)和kk个变换规则(k \le 15)(k≤15)。

规则:

一位数可变换成另一个一位数:

规则的右部不能为零。

例如:n=234n=234。有规则(k=2k=2):

22->55
33->66
上面的整数234234经过变换后可能产生出的整数为(包括原数):

234234
534534
264264
564564
共44 种不同的产生数

问题:

给出一个整数 nn 和kk 个规则。

求出:

经过任意次的变换(00次或多次),能产生出多少个不同整数。

仅要求输出个数。

输入输出格式

输入格式:

键盘输入,格式为:

n knk
x_1 y_1x1​y1​
x_2 y_2x2​y2​
... ...

x_n y_nxn​yn​

输出格式:

屏幕输出,格式为:

1个整数(满足条件的个数):

输入输出样例

输入样例#1

234 2
2 5
3 6

输出样例#1

4

思路

本题的性质相当于排列组合。每一位的数字可以转换成的数字的个数的乘积。floyd求出每个数字可以变成多少种数。

#include <stdio.h>
#include <iostream>
using namespace std;
int n,k,f[11][11];
int a[2001],d[11],x,y;
string str;
inline void munite()
{
	int i,j;
	a[0]=1;
	for(i=0;str[i];i++)
	{
		int t(0);
		x=d[str[i]-'0'];
		for(j=0;j<1000;j++)
		{
			a[j]=a[j]*x+t;
			t=a[j]/10;
			a[j]%=10;
		}
	}
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	int i,j,k;
	while(cin>>str>>n)
	{
		for(i=0;i<n;i++)
		{
			cin>>x>>y;
			f[x][y]=1;
		}
		for(k=1;k<=9;k++)
		{
			for(i=0;i<=9;i++)
			{
				for(j=1;j<=9;j++)
				{
					if(f[i][k] && f[k][j])
					{
						f[i][j]=1;
					}
				}
			}
		}
		for(i=0;i<=9;i++)
		{
			f[i][i]=1;
			for(j=0;j<=9;j++)
			{
				if(f[i][j])
				{
					d[i]++;
				}
			}
		}
		munite();
		i=1000;
		while(a[i]==0)
		{
			i--;
		}
		for(;i>=0;i--)
		{
			cout<<a[i];
		}
		cout<<endl;
	}
	cout<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值