题目背景
此题约为NOIP提高组Day1T1难度。
题目描述
B君站在一个n\times nn×n的棋盘上。最开始,B君站在(1,1)
这个点,他要走到(n,n)
这个点。
B君每秒可以向上下左右的某个方向移动一格,但是很不妙,C君打算阻止B君的计划。
每秒结束的时刻,C君会在(x,y)
上摆一个路障。B君不能走在路障上。
B君拿到了C君准备在哪些点放置路障。所以现在你需要判断,B君能否成功走到(n,n)
。
保证不会走到某处,然后被一个路障砸死。
输入输出格式
输入格式:
首先是一个正整数T
,表示数据组数。
对于每一组数据:
第一行,一个正整数n
。
接下来2n-2
行,每行两个正整数x
和y
,意义是在那一秒结束后,(x,y)
将被摆上路障。
输出格式:
对于每一组数据,输出Yes
或No
,回答B君能否走到(n,n)
。
输入输出样例
输入样例#1
2 2 1 1 2 2 5 3 3 3 2 3 1 1 2 1 3 1 4 1 5 2 2
输出样例#1
Yes Yes
说明
样例解释:
以下0
表示能走,x
表示不能走,B
表示B君现在的位置。从左往右表示时间。
Case 1:
0 0 0 0 0 B (已经走到了)
B 0 x B x 0
Case 2:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 x 0 0 0 0 x 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 x 0 0
B 0 0 0 0 0 B 0 0 0 0 0 B 0 0 0 0 x B 0 ......(B君可以走到终点)
数据规模:
防止骗分,数据保证全部手造。
对于20%
的数据,有n<=3
。
对于60%
的数据,有n<=500
。
对于100%
的数据,有n<=1000
。
对于100%
的数据,有T<=10。
思路
其实是一道dp好题。。
设dp[i][j]是B君的位置,B君可以从dp[i-1][j]或dp[i][j-1],则有:
dp[i][j]=(dp[i][j-1] || dp[i-1][j])&&a[i][j]!=1;
其中a[i][j]代表当前是否是障碍物,1代表有障碍物。
注意要算出两点之间的最短距离,对于第i秒,则有:x+y-2>i。
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
int n,x,y,t,s,a[1001][1001],dp[1001][1001];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
register int i,j,k;
cin>>t;
while(t--)
{
cin>>n;
memset(dp,0,sizeof dp);
memset(a,0,sizeof a);
for(i=1;i<=2*n-2;i++)
{
cin>>x>>y;
if(x==n&&y==n&&x+y-2<i)
{
cout<<"No"<<endl;
}
if(x+y-2>i)
{
a[x][y]=1;
}
}
dp[1][1]=1;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if((dp[i][j-1]==1 || dp[i-1][j]==1) && a[i][j]!=1)
{
dp[i][j]=1;
}
}
}
if(dp[n][n])
{
cout<<"Yes"<<endl;
}
else
{
cout<<"No"<<endl;
}
}
return 0;
}