[洛谷]P5414 [YNOI2019]排序 (#模拟)

题目描述

对于一个数列{7, 1, 2, 3}进行排序,我们可以把7 从头移动到尾。但是这个操作的成本是7,并不是最佳的。最佳的排序方式是将连续的1、2、3 移动到7 的前面。这样的话,总的操作成本就是1+2+3=6,比之前的成本7 要小。

你的任务是,对于一个给定的数列,输出对这个数列进行排序的最小成本。

输入输出格式

输入格式:

输入文件名为sort.in。

每个输入文件包含多组数据。

输入文件的第一行,包含一个正整数T,代表该输入文件中所含的数据组数。

接下来是T组数据,每组数据的格式如下:

每组数据包含2 行;

第一行包含一个正整数n,代表数列中元素的个数,其中0 < n ≤ 102;

第二行包含n个整数,两个数之间以一个空格隔开,代表数列中的元素ki,其中-10^{7}−107 ≤ ki ≤ 10^{7}107。

输出格式:

输出文件名为sort.out。

输出文件包含T行,分别对应T组数据的答案,即对数列进行排序的最小成本。

输入输出样例

输入样例#1

1
4
7 1 2 3

输出样例#1

6

说明

对于60%的数据:0 < n ≤ 60,-10^{7}−107 ≤ ki ≤ 10^{7}107

对于80%的数据:0 < n ≤ 80, -10^{7}−107 ≤ ki ≤ 10^{7}107

对于100%的数据:0 < n ≤ 102,-10^{7}−107 ≤ ki ≤ 10^{7}107


思路

排序过后的数,一定递增或递减。每次移动某些数字,使得数组递增或递减,而花费是移动数字的和。

排序的是最小成本,那么没有被排序的数,就是排过序的数以外的,就是最大成本了。不妨我们求出每次需要进行排序的2个数中最大的值加上每一次排序用的成本。

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
int a[101],n,t,s,cnt,b[101];
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	register int i,j,k;
	cin>>t;
	while(t--)
	{
		s=cnt=0;
		memset(b,0,sizeof(b));
		cin>>n;
		for(i=1;i<=n;i++)
		{
			cin>>a[i];
			s=s+a[i];//求数字之和 
		}
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=i-1;j++)
			{
				if(a[i]>=a[j]) 
				{
					b[i]=max(b[i],b[j]);
				}
			}
			b[i]=b[i]+a[i];
			if(b[i]>cnt)
			{
				cnt=b[j];
			}
		}
		cout<<s-cnt<<endl;
	}
	return 0;
}

题目 P5413 "YNOI2019 骑单车" 是一个经典的动态规划和贪心算法的问题。该题主要涉及两个概念:路径规划和状态转移方程。 **背景描述** 假设你在一个二维网格上,每个单元格代表一个地点,你需要从起点出发骑车到终点,并尽可能地减少骑行时间。网格中的每个单元格都有两种可能的状态:平地(速度不变)或斜坡(速度减半)。你的目标是找到一条最短的路线。 **关键点解析** 1. **动态规划**:通常用于求解最优化问题。在这个问题中,我们可以定义一个二维数组 dp[i][j] 表示从起点到位置 (i, j) 的最短行驶时间。状态转移方程会根据当前位置的性质(平地还是斜坡)以及到达此位置的最短路径来自之前的节点计算。 2. **状态转移**:对于平地,dp[i][j] = dp[pi][pj] + cost,表示直接移动到相邻位置的时间;对于斜坡,dp[i][j] = min(dp[pi][pj], dp[pi][pj-1]) + cost/2,因为斜坡速度减半,所以需要选择更早的时刻经过。 3. **贪心策略**:有时候,为了达到全局最优,初始看起来不是最优的选择可能是正确的。但在这个问题中,贪心策略可能并不适用,因为我们不能仅依据当前状态做出决策,需要考虑到整个路径。 4. **边界条件**:初始化 dp 数组时,起点时间设为 0,其余位置设为正无穷大,保证一开始就只会向可达的位置移动。 **代码实现** 实现这样的动态规划算法通常需要用到一个优先队列(如最小堆),以便于高效地查找之前节点的最优时间。 **相关问题--:** 1. 如何设计状态转移方程来处理平地和斜坡的情况? 2. 这个问题是否存在剪枝操作以提高效率? 3. 如果网格大小非常大,如何避免存储所有 dp 值导致的空间爆炸?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值