[洛谷]P3870 [TJOI2009]开关 (#线段树)

题目描述

现有N(2 ≤ N ≤ 100000)盏灯排成一排,从左到右依次编号为:1,2,......,N。然后依次执行M(1 ≤ M ≤ 100000)项操作,操作分为两种:第一种操作指定一个区间[a, b],然后改变编号在这个区间内的灯的状态(把开着的灯关上,关着的灯打开),第二种操作是指定一个区间[a, b],要求你输出这个区间内有多少盏灯是打开的。灯在初始时都是关着的。

输入格式

第一行有两个整数N和M,分别表示灯的数目和操作的数目。接下来有M行,每行有三个整数,依次为:c, a, b。其中c表示操作的种类,当c的值为0时,表示是第一种操作。当c的值为1时表示是第二种操作。a和b则分别表示了操作区间的左右边界(1 ≤ a ≤ b ≤ N)。

输出格式

每当遇到第二种操作时,输出一行,包含一个整数:此时在查询的区间中打开的灯的数目。

输入输出样例

输入 #1

4 5
0 1 2
0 2 4
1 2 3
0 2 4
1 1 4

输出 #1

1
2

思路

线段树好题,且难度还是比较大的,最起码对于我这种辣鸡难度大。

本题框架:区间修改&区间查询

显然树状数组也可以,分块也可以。

某一区间的长度减去这个区间的亮灯数目就是这个区间在一次修改中所需要打开灯的数目,那么打开灯的数目变了,自然会带动这个区间sum的改变,因此我们需要维护父亲和儿子的sum值。

#include <stdio.h>
#include <iostream>
#define maxn 100001
using namespace std;
int a[maxn],n,m,cnt;
int tree[maxn<<2],tag[maxn<<2];
inline int ln(int p) {return p<<1;}
inline int rn(int p) {return p<<1|1;}
inline void push_up(int node)
{
	tree[node]=tree[ln(node)]+tree[rn(node)];
}
inline void push_down(int root,int l,int r,int mid)
{
	if(tag[root]==0) return;//如果父节点不需要改,儿子节点也不需要 
	tag[ln(root)]^=1,tag[rn(root)]^=1;//取反 
	tree[ln(root)]=(mid-l+1)-tree[ln(root)];//某一区间的长度减去这个区间的亮灯数目就是这个区间在一次修改中所需要打开灯的数目
	tree[rn(root)]=(r-mid)-tree[rn(root)];//某一区间的长度减去这个区间的亮灯数目就是这个区间在一次修改中所需要打开灯的数目
	tag[root]=0;
}
void update(int node,int l,int r,int cl,int cr)
{
	if(cl<=l && r<=cr)
	{
		tree[node]=(r-l+1)-tree[node];
		tag[node]^=1;
		return;
	}
	else
	{
		int mid=(l+r)>>1;
		push_down(node,l,r,mid);
		if(cl<=mid)
		{
			update(ln(node),l,mid,cl,cr);
		}
		if(mid<cr)
		{
			update(rn(node),mid+1,r,cl,cr);
		}
		push_up(node);
	}
}
int query(int node,int l,int r,int cl,int cr)
{
	if(cl<=l && r<=cr)
	{
		return tree[node];
	}
	int mid=(l+r)>>1;
	push_down(node,l,r,mid);
	int s(0);
	if(cl<=mid)
	{
		s=s+query(ln(node),l,mid,cl,cr);
	}
	if(mid<cr)
	{
		s=s+query(rn(node),mid+1,r,cl,cr);
	}
	return s;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	register int i;
	cin>>n>>m;
	while(m--)
	{
		int Case,x,y;
		cin>>Case>>x>>y;
		if(Case==0)
		{
			update(1,1,n,x,y);
		}
		else
		{
			cout<<query(1,1,n,x,y)<<endl;
		}
	}
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
洛谷P1168题目是关于中位数线段树解法的问题。中位数线段树解法可以通过维护两个堆来实现。一个是大根堆,一个是小根堆。每次插入元素时,根据一定的规则来维护这两个堆,使得大根堆的个数在一定情况下比小根堆多1或者相等。大根堆的最后一个元素即为中位数。具体的规则如下: 1. 如果大根堆和小根堆的个数相等,下一次插入的元素一定插入到大根堆。此时判断小根堆的堆顶是否大于当前元素x,如果是,则将小根堆的堆顶元素插入到大根堆,然后将x压入小根堆;否则直接将x压入大根堆。 2. 如果大根堆和小根堆的个数不相等,按照类似的规则进行操作。 通过以上规则,可以实现在每次插入元素时,维护两个堆的平衡,并且保证大根堆的最后一个元素即为中位数。 这种解法的时间复杂度为O(logN),其中N为序列的长度。 #### 引用[.reference_title] - *1* *2* [中位数(洛谷p1168)(堆/树状数组+二分/线段树+二分)](https://blog.csdn.net/qq_45604735/article/details/114382762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [洛谷 P1168 中位数(权值线段树,离散化)](https://blog.csdn.net/qq_38232157/article/details/127594230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值