数学建模评价类赛题基础入门(自用)

一般数据建模问题的提出

一般问题

        1. 实际对象都客观存在一些相关的数据信息。
        2. 如何综合利用这些相关信息给出综合评价结果、制定决策方案,或预测未来?
        3. 这类问题都归结为信息综合利用与评价问题

综合评价

        依据相关信息对被评价的对象所进行的客观、公正、合理的全面评价。

        综合评价是科学、合理决策的前提。

        综合评价的基础是信息的综合利用。

        综合评价的过程是数据建模的过程。

        数据建模的基础是数据的标准化处理。

综合评价的五个要素:

        ①被评价对象

        

        ②评价指标

        

        ③权重系数

        

        ④综合评价模型

        

        ⑤评价者

        评价者是直接参与评价的人,可以是某一个人,也可以是一个团体。

        对于评价目的选择、评价指标体系确定、权重关系的确定和评价模型的建立都与评价者有关。

综合评价过程的流程

        

        ①确定评价对象

        ②如何评价,即选择评价方法

        ③对评价参数标准化处理(原因如下)

                

        ④确定权重系数

        ⑤构建综合评价模型

        ⑥给出评价结果

数据处理的一般方法

数据类型的一致化处理方法

        一般问题的数据指标分为:极大型、极小型、中间型和区间型(中间型是区间型的一种)。

        一般认为数据越大越好,因此需要对极小型、中间型和区间型指标进行极大化处理:

        ①极小型

        

        ②中间型

        

        ③区间型

        

        M和m为边界,超过边界的数据将失去参考价值。

数据指标的无量纲化处理方法

        

        因此要去除量纲的影响。

        常用方法:标准差法、极值差法和功效系数法等。

        

        ①标准差法

        

        ②极值差法

        

        ③功效系数法

        

        效果

        

        

定性指标的量化处理方法

        简单地对应数字分量化方法是不科学的,构造模糊隶属函数的量化方法是一种可行有效的方法。

        

        

        ①线性加权综合法

        

        ②非线性加权综合法

        

        ③逼近理想点(TOPSIS)方法

        

        ④其他综合评价法

            ·因子分析法

            ·聚类分析法

            ·模糊评价法

            ·层次分析法

本文仅是我个人学习记录笔记  

来源——B站UP主“数学建模老哥”,《保奖班11:数学建模评价类赛题解析》

https://www.bilibili.com/video/BV1wh4y1p7y3/?share_source=copy_web&vd_source=454dfddb4944fd6b677fc478b074ceed

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值