一般数据建模问题的提出
一般问题
1. 实际对象都客观存在一些相关的数据信息。
2. 如何综合利用这些相关信息给出综合评价结果、制定决策方案,或预测未来?
3. 这类问题都归结为信息综合利用与评价问题。
综合评价
依据相关信息对被评价的对象所进行的客观、公正、合理的全面评价。
综合评价是科学、合理决策的前提。
综合评价的基础是信息的综合利用。
综合评价的过程是数据建模的过程。
数据建模的基础是数据的标准化处理。
综合评价的五个要素:
①被评价对象
②评价指标
③权重系数
④综合评价模型
⑤评价者
评价者是直接参与评价的人,可以是某一个人,也可以是一个团体。
对于评价目的选择、评价指标体系确定、权重关系的确定和评价模型的建立都与评价者有关。
综合评价过程的流程
①确定评价对象
②如何评价,即选择评价方法
③对评价参数标准化处理(原因如下)
④确定权重系数
⑤构建综合评价模型
⑥给出评价结果
数据处理的一般方法
数据类型的一致化处理方法
一般问题的数据指标分为:极大型、极小型、中间型和区间型(中间型是区间型的一种)。
一般认为数据越大越好,因此需要对极小型、中间型和区间型指标进行极大化处理:
①极小型
②中间型
③区间型
M和m为边界,超过边界的数据将失去参考价值。
数据指标的无量纲化处理方法
因此要去除量纲的影响。
常用方法:标准差法、极值差法和功效系数法等。
①标准差法
②极值差法
③功效系数法
效果
定性指标的量化处理方法
简单地对应数字分量化方法是不科学的,构造模糊隶属函数的量化方法是一种可行有效的方法。
①线性加权综合法
②非线性加权综合法
③逼近理想点(TOPSIS)方法
④其他综合评价法
·因子分析法
·聚类分析法
·模糊评价法
·层次分析法
本文仅是我个人学习记录笔记
来源——B站UP主“数学建模老哥”,《保奖班11:数学建模评价类赛题解析》
https://www.bilibili.com/video/BV1wh4y1p7y3/?share_source=copy_web&vd_source=454dfddb4944fd6b677fc478b074ceed