单源最短路径问题 Dijkstra算法 之 小木乃伊到我家

本文介绍了Dijkstra和Bellman-Ford算法在解决单源最短路径问题中的应用,讨论了这两种算法的适用场景、工作原理及优缺点。Dijkstra算法适用于非负权重图,而Bellman-Ford则能处理含负权重边的情况,同时能检测负权重环。文章通过实例解析了两种算法的思想,并提及它们在实际问题中的应用,如优化路线和快递服务。
摘要由CSDN通过智能技术生成


如图,圈代表点,线代表边即两点之间距离。以我们的超强大脑不费摧毁之力就可以看出 节点1和节点4之间的最短距离为3;但是点越多,边越多,图就会非常复杂,这时候我们就需要想一个算法程式来解决这种问题(最短路径问题)。

给定一个带权G=(V,E),其中每条边的权是一个实数。另外,还给定V中的一个顶点,称为源(起点)。现在要计算从源到其他所有各顶点的最短路径长度。而这个长度就是指最短路径这条路上各边权值之和。这个问题通常称为单源最短路径问题

这个问题在生活中很常见,可以应用到生活中多种场合,例如:优化管道、路由表、快递服务、通信网站等。

而解决最短路径问题的算法有诸多:Dijkstra、Bellman-Ford、SPFA、Floyd、A*算法。每一种算法都有其巧妙之处,都值得我们去学习:


Dijkstra:适用于权值为非负的带权有向或无向图的单源最短路径,用邻接表,不优化,复杂度O(V 2 +E)

Bellman-Ford:适用于含负权边的带权有向图(即要求不能包含权值总和为负值回路(负权值回路)的单源最短路径,并且能够检测负环并输出负环,复杂度O(VE)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值