题目链接
最大子列和是一道很经典的题目。有许多种解法,时间复杂度从O(N2),到O(N log N),再到O(N)都有。这里只讨论O(N)的解法。
用now来存储目前子列最大和,用max来存储历史子列最大和。当now小于0时,即当前的这串子列无法再对我们寻找的最大子列的和做贡献,此时我们便舍弃掉这串子列和,从下一个元素开始重新计算目前子列和。巧妙的是,这样便使得我们的目前子列和永远处在“从第一个元素开始往后做和,无论在哪个元素停下来这个和都是正数,对子列和的贡献为正”的状态。不难用数学归纳法证明,具有最大子列和的子列一定具有此种性质,此为必要条件。因此我们在线地处理所有具有这种性质的子列,并记录其中的最大者的和,即可得出答案。
#include <stdio.h>
#include <stdlib.h>