PTA 最大子列和问题 C语言实现

本文探讨了如何使用C语言实现O(N)时间复杂度解决PTA上的最大子列和经典算法。通过维护现在子列和(now)和历史最大子列和(max),在now变为负数时重置,确保子列和始终为正,从而找到最大子列和。
摘要由CSDN通过智能技术生成

题目链接
在这里插入图片描述
最大子列和是一道很经典的题目。有许多种解法,时间复杂度从O(N2),到O(N log N),再到O(N)都有。这里只讨论O(N)的解法。
用now来存储目前子列最大和,用max来存储历史子列最大和。当now小于0时,即当前的这串子列无法再对我们寻找的最大子列的和做贡献,此时我们便舍弃掉这串子列和,从下一个元素开始重新计算目前子列和。巧妙的是,这样便使得我们的目前子列和永远处在“从第一个元素开始往后做和,无论在哪个元素停下来这个和都是正数,对子列和的贡献为正”的状态。不难用数学归纳法证明,具有最大子列和的子列一定具有此种性质,此为必要条件。因此我们在线地处理所有具有这种性质的子列,并记录其中的最大者的和,即可得出答案。

#include <stdio.h>
#include <stdlib.h>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值