Etract Datasets

本文介绍SAP中Extract的使用方法,包括如何定义结构、填充数据、排序及循环处理等关键步骤。通过示例代码展示如何创建并操作Extract以实现动态存储和排序结构化数据。
摘要由CSDN通过智能技术生成

         在SAP中,除内表之外的另一种大量内存处理数据的的方式为Extract,其允许用户动态的存储并排序结构化数据,同时通循环处理。

        Extract 行结构分配的语法是: FIELD-GROUPS Header.

        Header具体结构的动态生成,语法是: Insert f1 f2 ... into Header. (注意:f1,f2是程序中定义的全局数据对象,必须为扁平结构)。

        填充Extract语法: Extract Header.

        排序及循环语法:

                SORT.

 

                LOOP.

                        <Statement Block>

                ENDLOOP.     

 

 示例:

               DATA : field1 type i,

                              field2 type i.

               FIELD-GROUPS Header.

               INSERT field1 field2 INTO Header.

                

               DO  5 TIMES.

                    field1 = sy-index.

                    field2 = sy-index ** 2.

                    EXTRACT Header.

               ENDDO.    

               

                SORT DESCENDING.

 

                LOOP.

                    WRITE : / field1,field2 .

 

                ENDLOOP.

 

### 使用 PyTorch 数据集 在 PyTorch 中,`torchvision.datasets` 提供了许多常用的数据集接口,可以方便地加载和处理图像数据。对于像 CIFAR-10 这样的标准数据集,可以直接通过 `torchvision.datasets.CIFAR10` 来获取并应用转换操作[^1]。 ```python import torchvision from torch.utils.data import DataLoader # 加载CIFAR-10训练集,并将其转换为张量形式 dataset = torchvision.datasets.CIFAR10( 'data', train=True, transform=torchvision.transforms.ToTensor(), download=True ) dataloader = DataLoader(dataset, batch_size=64) for data in dataloader: imgs, targets = data print(imgs.shape) ``` 为了更深入地分析或可视化数据集中的样本分布情况,还可以借助 TensorBoard 工具来查看嵌入向量表示。例如,在 MNIST 测试集中提取前 100 张图片及其标签作为特征展示给用户[^2]: ```python from torchvision import datasets from tensorboardX import SummaryWriter dataset = datasets.MNIST('mnist', train=False, download=True) images = dataset.test_data[:100].float() labels = dataset.test_labels[:100] features = images.view(100, 784) with SummaryWriter(comment='MNIST') as w: w.add_embedding(features, metadata=labels, label_img=images.unsqueeze(1)) ``` 当涉及到自定义数据集时,则需继承 `torch.utils.data.Dataset` 类重写两个方法:`__len__()`, 返回数据集大小;以及 `__getitem__(index)` , 获取指定索引位置上的单个样本实例[^4]。 如果打算利用迁移学习技术快速构建高效模型,可选用由官方预先训练好的网络结构如 ResNet18 并调整最后一层全连接层以适应新的分类任务需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值