MindSpore之Faster_rcnn

前一阵子参加了华为的多目标检测比赛 link,尝试通过 faster_rcnn 算法定位和分类病理图像中的癌细胞。MindSpore 是华为的 AI 框架,支持华为自研的Ascend芯片。MindSpore目前不支持macOS,不过组织方提供了华为云作为训练平台。以下将分享使用mindspore及华为云的经验。

Notebook

  1. 首先可以从mindspore官方的 gitee 上下载faster_rcnn模型, 注意原先的model_zoo已经被移至model 仓库,同时还可以这里 link 下载在imageNeth上预训练的模型,我选择的是resnet_50。

  2. 接下来使用华为云的model_art新建notebook。有多种设置可以进行选择,我使用的是mindspore1.2.1-cuda10.1和Ascend. 这个笔记本跟google colab类似但功能更加强大,你可以在上面新建jupyter notebook,打开ternimal, 查看json,csv文件(文件查看器的功能很棒)等等。 将需要用的文件保存在work文件夹下,包括先前下载的faster_rcnn和预训练模型。

  3. 按照faster_rcnn下的readme文件执行代码,首先应该修改default_config.yaml, 根据你使用的数据集更改coco_classes和num_classes。这一步在readme文件中省略了,但是会影响模型的结构和训练的效率。接下来对预训练的模型进行处理

    python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
    

    ckpt_file为到预训练的模型的路径。这步之后会得到所需要的backbone.ckpt。

  4. 下一步是处理自己的数据集,新建txt文件,每行是按空间分割的图像标注,格式如下

    0000001.jpg 0,259,401,459,7,0 35,28,324,201,2,0 0,30,59,80,2,0
    

    第一列是图像的相对路径【不需要写成train2017/0000001.jpg】,其余为[xmin,ymin,xmax,ymax,class,is_crowd]格式的框

  5. 继续修改default_config.yaml,save_checkpoint_epochs修改成10(notebook上的空间有限,设为1可能在几十个epoch后出现disk存储空间不够用),更改anno_path和image_dir。

  6. 执行bash run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR]。PRETRAINED_MODEL为backbone.ckpt的路径。BACKBONE=resnet_v1.5_50,COCO_ROOT不需要,MINDRECORD_DIR设成想要存放MINDRECORD的路径。MINDRECORD类似tensorflow的tfrecord。

    请添加图片描述
    注意:第一个epoch涉及图的生成会比较慢

  7. 执行bash run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR]。CHECKPOINT_PATH为训练得到的faster_rcnn-12_50.ckpt 。如果只想看在训练集上的结果,[VALIDATION_JSON_FILE]可以直接使用annotations/train.txt ,[COCO_ROOT] [MINDRECORD_DIR]保持不变。

  8. 下载生成的results.pkl.bbox,进行可视化
    请添加图片描述
    可以看到结果不是很理想,可能是训练次数不够多的问题。

    #可视化的代码
    with open(anno_path,"r") as f:
        imgs=[image_dir+line.strip().split(" ")[0] for line in f.readlines()]
    with open(anno_path,"r") as f:
        annotations=get_annotation(f)
    with open(pred_path,"r") as fp:
        pred_res=json.load(fp)
    id2img=dict(zip(range(1,len(imgs)+1),imgs))
    
    for kk in id2img:
        # draw image
        df=pd.DataFrame(pred_res)
        image_path=id2img[kk]
        f = Image.open(image_path) 
        img_np = np.asarray(f ,dtype=np.float32)
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.imshow(img_np.astype(np.uint8))
    
        # draw prediction
        df_group=df.groupby('image_id')
        df_i=df_group.get_group(kk)
        for box_index in range(len(df_i)):
            boxes=df_i.iloc[box_index]
            ymin=boxes["bbox"][0]
            xmin=boxes["bbox"][1]
            ymax=boxes["bbox"][2]
            xmax=boxes["bbox"][3]
            ax.add_patch(plt.Rectangle((xmin,ymin),(xmax-xmin),(ymax-ymin),fill=False,edgecolor='red', linewidth=1))
        
        # draw ground truth
        annotation=annotations[kk]
        for anno in annotation:
            xmin=anno[0]
            ymin=anno[1]
            xmax=anno[2]
            ymax=anno[3]
            ax.add_patch(plt.Rectangle((xmin,ymin),(xmax-xmin),(ymax-ymin),fill=False,edgecolor='blue', linewidth=1))
            labels = []
        plt.show()
        break
    

OBS & Algorithm

一般来说,在notebook上完成debug后,就进入到实际的训练的环节,这一步需要执行上百个epoch,通常用ModelArts上的Algorithm和training job来完成。接下来介绍如何使用OBS以及如何在ModelArts上创建Algorithm进行训练。整个过程分成三步

  1. 将代码和模型上传OBS。
    在执行bash run_standalone_train_ascend.sh时,会在script下新建train文件夹。只需要上传此文件夹和faster_rcnn-12_50.ckpt即可。其中default_config和train.py需要进行一些修改。default_config: 将data_url,label_url,metadata_url设定成数据集的位置

    #Train.py: 在训练前对数据集进行处理
    def parse_data():
        data_path = './dataset/' 
        if not os.path.exists(data_path):
            mox.file.copy_parallel(src_url=config.data_url, dst_url=data_path)
        label_path = './labels.csv' 
        if not os.path.exists(label_path):
            mox.file.copy_parallel(src_url=config.label_url, dst_url=label_path)
        metadata_path = './metadata.csv' 
        if not os.path.exists(metadata_path):
            mox.file.copy_parallel(src_url=config.metadata_url, dst_url=metadata_path)
        
        os.mkdir("./train/")
        os.mkdir("./eval/")
        os.mkdir("./annotations/")
        file = open('./annotations/train.txt','w')
        file.close()
        data_path = './dataset/images/' 
            
        image_files, image_anno_dict = filter_valid_data(label_path, data_path)
        metadata_df = pd.read_csv(metadata_path)
        train_test_split = 1
        split_at = len(image_files)*train_test_split
    
        for idx, image_name in enumerate(image_files):
            image_path = os.path.join(data_path, image_name + '.bmp')
            image_metadata = metadata_df[metadata_df.image_id == image_name].iloc[0]
            w = image_metadata.width
            h = image_metadata.height
            image_anno_dict[image_name][:,[0,2]] *= w
            image_anno_dict[image_name][:,[1,3]] *= h
            bool_matrix = image_anno_dict[image_name][:,4:] == 1
    
            classes=[]
            categs=np.arange(4)
            for row in bool_matrix:
                classes.append(get_categ(categs[row]))
            if len(classes)!=len(image_anno_dict[image_name]):
                print("warning")
    
            annos = np.array(image_anno_dict[image_name],dtype=np.int32)
            if idx < split_at:
                ty="train"
            else:
                ty="test"
                break
            shutil.move(image_path,f"./{ty}/")
            save_anno(image_name+ '.bmp',annos,classes,ty)
    
        
        with open("./annotations/train.txt","r") as f:
            print(f.readlines()[0])
        mox.file.copy_parallel(src_url="./annotations", dst_url=config.mindrecord_dir)
        config.anno_path="./annotations/train.txt"
        config.image_dir="./train/"
    

    这里会通过Moxing框架进行一些文件的拷贝【image source: Mindsporechallenge】
    请添加图片描述

  2. 创建algorithm
    注意:需要保存的文件,为其设定路径时,一定要放在output path mapping configuration里
    请添加图片描述

  3. 设定training job
    这里不需要像之前使用bash来跑了【当然也可以,但是需要通过python来调用bash,然后bash在调用python, 还不如直接使用python】
    请添加图片描述

对华为产品的体验:

  1. notebook挺好用的,它同时有三个功能,file explorer, jupyter notebook, ternimal,但是对下载文件的大小有限制。
  2. Algorithm中对input_rul和ouput_url进行区分,如果不小心把保留文件的路径设成input_url就会无法保留。
  3. OBS啥的还是比较麻烦,上传文件有个数限制,下载文件似乎不能批量下载。文件没有查看功能,而且不好移动到别的文件夹。在notebook上得到的checkpoint,需要先下载下来(好像不能超过100M?),再保存到OBS里,相当于重新弄了一遍。对初上手来说,需要比较多的尝试。
在 PyTorch 中使用 `faster_rcnn_resnet50_fpn` 模型,可以按照以下步骤进行: 1. 安装 PyTorch 和 TorchVision 库(如果未安装的话)。 2. 导入必要的库和模块: ```python import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor ``` 3. 加载预训练模型 `faster_rcnn_resnet50_fpn`: ```python model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) ``` 4. 修改模型的分类器,将其调整为适合你的任务。由于 `faster_rcnn_resnet50_fpn` 是一个目标检测模型,它的分类器通常是用来检测物体类别的。如果你的任务不需要检测物体类别,可以将分类器替换为一个只有一个输出的线性层: ```python num_classes = 1 # 只检测一个类别 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) ``` 5. 将模型转换为训练模式,并将其移动到所选设备(如GPU)上: ```python device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) model.train() # 转换为训练模式 ``` 6. 训练模型,可以使用自己的数据集来训练模型,或者使用 TorchVision 中的数据集,如 Coco 或 Pascal VOC 数据集。 7. 在测试阶段,可以使用以下代码来检测图像中的物体: ```python # 定义图像 image = Image.open('test.jpg') # 转换为Tensor,并将其移动到设备上 image_tensor = torchvision.transforms.functional.to_tensor(image) image_tensor = image_tensor.to(device) # 执行推理 model.eval() with torch.no_grad(): outputs = model([image_tensor]) # 处理输出 boxes = outputs[0]['boxes'].cpu().numpy() # 物体框 scores = outputs[0]['scores'].cpu().numpy() # 物体分数 ``` 需要注意的是,`faster_rcnn_resnet50_fpn` 是一个较大的模型,需要较高的计算资源和训练时间。在训练和测试时,建议使用GPU来加速计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值