前一阵子参加了华为的多目标检测比赛 link,尝试通过 faster_rcnn 算法定位和分类病理图像中的癌细胞。MindSpore 是华为的 AI 框架,支持华为自研的Ascend芯片。MindSpore目前不支持macOS,不过组织方提供了华为云作为训练平台。以下将分享使用mindspore及华为云的经验。
Notebook
-
首先可以从mindspore官方的 gitee 上下载faster_rcnn模型, 注意原先的model_zoo已经被移至model 仓库,同时还可以这里 link 下载在imageNeth上预训练的模型,我选择的是resnet_50。
-
接下来使用华为云的model_art新建notebook。有多种设置可以进行选择,我使用的是mindspore1.2.1-cuda10.1和Ascend. 这个笔记本跟google colab类似但功能更加强大,你可以在上面新建jupyter notebook,打开ternimal, 查看json,csv文件(文件查看器的功能很棒)等等。 将需要用的文件保存在work文件夹下,包括先前下载的faster_rcnn和预训练模型。
-
按照faster_rcnn下的readme文件执行代码,首先应该修改default_config.yaml, 根据你使用的数据集更改coco_classes和num_classes。这一步在readme文件中省略了,但是会影响模型的结构和训练的效率。接下来对预训练的模型进行处理
python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
ckpt_file为到预训练的模型的路径。这步之后会得到所需要的backbone.ckpt。
-
下一步是处理自己的数据集,新建txt文件,每行是按空间分割的图像标注,格式如下
0000001.jpg 0,259,401,459,7,0 35,28,324,201,2,0 0,30,59,80,2,0
第一列是图像的相对路径【不需要写成train2017/0000001.jpg】,其余为[xmin,ymin,xmax,ymax,class,is_crowd]格式的框
-
继续修改default_config.yaml,save_checkpoint_epochs修改成10(notebook上的空间有限,设为1可能在几十个epoch后出现disk存储空间不够用),更改anno_path和image_dir。
-
执行bash run_standalone_train_ascend.sh [PRETRAINED_MODEL] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR]。PRETRAINED_MODEL为backbone.ckpt的路径。BACKBONE=resnet_v1.5_50,COCO_ROOT不需要,MINDRECORD_DIR设成想要存放MINDRECORD的路径。MINDRECORD类似tensorflow的tfrecord。
注意:第一个epoch涉及图的生成会比较慢 -
执行bash run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH] [BACKBONE] [COCO_ROOT] [MINDRECORD_DIR]。CHECKPOINT_PATH为训练得到的faster_rcnn-12_50.ckpt 。如果只想看在训练集上的结果,[VALIDATION_JSON_FILE]可以直接使用annotations/train.txt ,[COCO_ROOT] [MINDRECORD_DIR]保持不变。
-
下载生成的results.pkl.bbox,进行可视化
可以看到结果不是很理想,可能是训练次数不够多的问题。#可视化的代码 with open(anno_path,"r") as f: imgs=[image_dir+line.strip().split(" ")[0] for line in f.readlines()] with open(anno_path,"r") as f: annotations=get_annotation(f) with open(pred_path,"r") as fp: pred_res=json.load(fp) id2img=dict(zip(range(1,len(imgs)+1),imgs)) for kk in id2img: # draw image df=pd.DataFrame(pred_res) image_path=id2img[kk] f = Image.open(image_path) img_np = np.asarray(f ,dtype=np.float32) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.imshow(img_np.astype(np.uint8)) # draw prediction df_group=df.groupby('image_id') df_i=df_group.get_group(kk) for box_index in range(len(df_i)): boxes=df_i.iloc[box_index] ymin=boxes["bbox"][0] xmin=boxes["bbox"][1] ymax=boxes["bbox"][2] xmax=boxes["bbox"][3] ax.add_patch(plt.Rectangle((xmin,ymin),(xmax-xmin),(ymax-ymin),fill=False,edgecolor='red', linewidth=1)) # draw ground truth annotation=annotations[kk] for anno in annotation: xmin=anno[0] ymin=anno[1] xmax=anno[2] ymax=anno[3] ax.add_patch(plt.Rectangle((xmin,ymin),(xmax-xmin),(ymax-ymin),fill=False,edgecolor='blue', linewidth=1)) labels = [] plt.show() break
OBS & Algorithm
一般来说,在notebook上完成debug后,就进入到实际的训练的环节,这一步需要执行上百个epoch,通常用ModelArts上的Algorithm和training job来完成。接下来介绍如何使用OBS以及如何在ModelArts上创建Algorithm进行训练。整个过程分成三步
-
将代码和模型上传OBS。
在执行bash run_standalone_train_ascend.sh时,会在script下新建train文件夹。只需要上传此文件夹和faster_rcnn-12_50.ckpt即可。其中default_config和train.py需要进行一些修改。default_config: 将data_url,label_url,metadata_url设定成数据集的位置#Train.py: 在训练前对数据集进行处理 def parse_data(): data_path = './dataset/' if not os.path.exists(data_path): mox.file.copy_parallel(src_url=config.data_url, dst_url=data_path) label_path = './labels.csv' if not os.path.exists(label_path): mox.file.copy_parallel(src_url=config.label_url, dst_url=label_path) metadata_path = './metadata.csv' if not os.path.exists(metadata_path): mox.file.copy_parallel(src_url=config.metadata_url, dst_url=metadata_path) os.mkdir("./train/") os.mkdir("./eval/") os.mkdir("./annotations/") file = open('./annotations/train.txt','w') file.close() data_path = './dataset/images/' image_files, image_anno_dict = filter_valid_data(label_path, data_path) metadata_df = pd.read_csv(metadata_path) train_test_split = 1 split_at = len(image_files)*train_test_split for idx, image_name in enumerate(image_files): image_path = os.path.join(data_path, image_name + '.bmp') image_metadata = metadata_df[metadata_df.image_id == image_name].iloc[0] w = image_metadata.width h = image_metadata.height image_anno_dict[image_name][:,[0,2]] *= w image_anno_dict[image_name][:,[1,3]] *= h bool_matrix = image_anno_dict[image_name][:,4:] == 1 classes=[] categs=np.arange(4) for row in bool_matrix: classes.append(get_categ(categs[row])) if len(classes)!=len(image_anno_dict[image_name]): print("warning") annos = np.array(image_anno_dict[image_name],dtype=np.int32) if idx < split_at: ty="train" else: ty="test" break shutil.move(image_path,f"./{ty}/") save_anno(image_name+ '.bmp',annos,classes,ty) with open("./annotations/train.txt","r") as f: print(f.readlines()[0]) mox.file.copy_parallel(src_url="./annotations", dst_url=config.mindrecord_dir) config.anno_path="./annotations/train.txt" config.image_dir="./train/"
这里会通过Moxing框架进行一些文件的拷贝【image source: Mindsporechallenge】
-
创建algorithm
注意:需要保存的文件,为其设定路径时,一定要放在output path mapping configuration里
-
设定training job
这里不需要像之前使用bash来跑了【当然也可以,但是需要通过python来调用bash,然后bash在调用python, 还不如直接使用python】
对华为产品的体验:
- notebook挺好用的,它同时有三个功能,file explorer, jupyter notebook, ternimal,但是对下载文件的大小有限制。
- Algorithm中对input_rul和ouput_url进行区分,如果不小心把保留文件的路径设成input_url就会无法保留。
- OBS啥的还是比较麻烦,上传文件有个数限制,下载文件似乎不能批量下载。文件没有查看功能,而且不好移动到别的文件夹。在notebook上得到的checkpoint,需要先下载下来(好像不能超过100M?),再保存到OBS里,相当于重新弄了一遍。对初上手来说,需要比较多的尝试。