刷题日记Day4 | BST

BST :
1、对于 BST 的每一个节点 node,左子树节点的值都比 node 的值要小,右>子树节点的值都比 node 的值大。
2、对于 BST 的每一个节点 node,它的左侧子树和右侧子树都是 BST。

从做算法题的角度来看 BST,除了它的定义,还有一个重要的性质:BST 的中序遍历结果是有序的(升序)。

230.寻找第k小的元素

在这里插入图片描述
分析:
最简单的思路:根据BST中序遍历的特点,只需要中序排序后找到第k个值。

class Solution {
    //记录当前结果
    int res = 0;
    //记录当前排名
    int rank = 0;
    public int kthSmallest(TreeNode root, int k) {
        traverse(root,k);
        return res;
    }
    /**
     * 辅助函数
     * @param root
     * @param k
     */
    public void traverse(TreeNode root,int k){
        if(root == null){return;}
        traverse(root.left,k);
        /*中序遍历*/
        rank++;
        if(k == rank){
            res = root.val;
            return;
        }
        traverse(root.right,k);
    }
}

要知道 BST 性质是非常牛逼的,像红黑树这种改良的自平衡 BST,增删查改都是O(logN)的复杂度,让你算一个第k小元素,时间复杂度竟然要O(N),有点低效了。

改良版:
想找到第k小的元素,或者说找到排名为k的元素,如果想达到对数级复杂度,关键也在于每个节点得知道他自己排第几
比如说你让我查找排名为k的元素,当前节点知道自己排名第m,那么我可以比较m和k的大小:

  1. 如果m == k,显然就是找到了第k个元素,返回当前节点就行了。
  2. 如果k < m,那说明排名第k的元素在左子树,所以可以去左子树搜索第k个元素。
  3. 如果k > m,那说明排名第k的元素在右子树,所以可以去右子树搜索第k - m - 1个元素。

这样就可以将时间复杂度降到O(logN)了。

class Solution {
    public int kthSmallest(TreeNode root, int k) {
        MyBst bst = new MyBst(root);
        return bst.kthSmallest(k);
    }
}

class MyBst {
    TreeNode root;
    Map<TreeNode, Integer> nodeNum;

    public MyBst(TreeNode root) {
        this.root = root;
        this.nodeNum = new HashMap<TreeNode, Integer>();
        countNodeNum(root);
    }

    // 返回二叉搜索树中第k小的元素
    public int kthSmallest(int k) {
        TreeNode node = root;
        while (node != null) {
            int left = getNodeNum(node.left);
            if (left < k - 1) {
                node = node.right;
                k -= left + 1;
            } else if (left == k - 1) {
                break;
            } else {
                node = node.left;
            }
        }
        return node.val;
    }

    // 统计以node为根结点的子树的结点数
    private int countNodeNum(TreeNode node) {
        if (node == null) {
            return 0;
        }
        nodeNum.put(node, 1 + countNodeNum(node.left) + countNodeNum(node.right));
        return nodeNum.get(node);
    }

    // 获取以node为根结点的子树的结点数
    private int getNodeNum(TreeNode node) {
        return nodeNum.getOrDefault(node, 0);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化思维wz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值