目录
第一部分:Python入门——学会用Python“操控”数据
1.1 什么是数据分析?
- 从“数据”到“分析”:一场科学的探险
- 数据分析的日常工作:就像用显微镜看世界
1.2 Python基础:数据分析的“神奇魔杖”
- Python基础语法:数据分析的基本“食材”
- 变量、数据类型与运算符:它们是我们厨房里的锅碗瓢盆
- 条件语句和循环:如何避免代码跑偏,保证数据流程的高效性
1.3 安装与配置Python环境
- 安装Python:选择适合自己的“超能力工具”
- 使用IDE与Jupyter Notebook:你将拥有一个全能的数据实验室
- 依赖管理:让你的环境整洁又强大,像一名数据魔术师的工坊
第二部分:数据处理基础——用Python整理“凌乱的玩具”
2.1 数据类型与数据结构:Python的基础“积木”
- 数字、字符串与布尔类型:最简单的数据单位
- 列表、元组、字典、集合:数据的“多面体”,随心组合成你想要的形状
- 如何高效选择数据结构,优化数据处理效率
2.2 Python中的数据输入与输出
- 从“外部世界”获取数据:读取文件与API接口的交互
- 数据输出:如何将数据展示给别人看(或存档)
- 数据存储:CSV、Excel、SQL数据库,存储它们的魔法
2.3 基本数据处理:数据清理与整理的艺术
- 删除重复数据、填补缺失值:数据清理的“百宝箱”
- 数据格式转换:从不规则的数据中提取出有序的信息
- 数据筛选与排序:把杂乱的“数据线”整理成精美的“数据图”
第三部分:Pandas入门与进阶——数据分析的“全能神”
3.1 Pandas:数据分析的“瑞士军刀”
- 介绍Pandas:从数据处理小能手到“万金油”
- 使用
Series
和DataFrame
:Pandas的两大核心技能 - 索引与选择数据:如何轻松挑选“数据宝贝”
3.2 数据操作:Pandas做“数据厨师”
- 数据过滤与切片:如何做出符合口味的数据“菜肴”
- 分组与聚合:让你的数据“升华”成有用的信息
- 数据合并与连接:如何将各方数据“合力作战”
3.3 时间序列分析:让时间成为你的朋友
- 处理时间数据:让你的数据与时间共舞
- 时间序列的索引、切片与重采样:巧妙地控制时间流动
第四部分:数据可视化——用图表讲“数据故事”
4.1 数据可视化的艺术与科学
- 可视化的重要性:一个图表可以讲完千言万语
- 可视化原则:如何不让你的图表看起来像“画画”而是有“含金量”
4.2 使用Matplotlib和Seaborn绘制基本图表
- 基本图表:线图、柱状图、饼图、散点图,让数据栩栩如生
- 自定义图表:让你的图表既美观又实用,像设计师精心打磨的作品
4.3 高级图表与交互式可视化
- 热力图、箱线图、密度图:复杂数据背后的“故事”
- 使用Plotly与Bokeh实现交互式图表:数据就像在你手中舞蹈
第五部分:数据分析方法与技巧——用Python探索“数据的秘密”
5.1 探索性数据分析(EDA):数据的“侦探”之旅
- EDA的概念与流程:如何像侦探一样“查案”数据
- 描述性统计:给数据做体检,分析数据的“健康状况”
- 数据可视化与分析:看图说话,挖掘隐藏在数据中的“宝藏”
5.2 假设检验与统计分析:让数据“说真话”
- 假设检验的基本理论:用统计学方法确认数据“背后的真相”
- 常用统计方法:T检验、卡方检验、ANOVA分析,给你精准的“数据证据”
5.3 数据建模与机器学习基础
- 回归分析与分类模型:用Python预测未来,寻找数据中的规律
- 使用Scikit-learn实现机器学习算法:让Python为你成为数据的“预测师”
第六部分:数据分析项目实战——“从零到一”的数据挑战
6.1 项目概述:数据分析的全流程
- 数据分析项目的基本步骤:让你从数据采集到建模、预测都能轻松应对
- 数据集选择与导入:如何挑选合适的数据集并将其导入Python
6.2 案例一:客户分析与营销策略
- 项目背景与问题定义:理解业务需求,制定分析目标
- 数据处理与分析:客户数据的清理、分析与报告
- 数据可视化:如何用图表呈现分析结果,帮助做决策
6.3 案例二:金融数据分析与风险预测
- 分析金融数据:股市数据、财报数据如何影响风险评估
- 风险预测模型:用回归分析、分类模型预测市场风险
6.4 案例三:自然语言处理与情感分析
- 介绍NLP基础:文本数据的处理与分析
- 情感分析案例:分析社交媒体评论,评估公众情感
第七部分:Python与大数据——在“大海”中游泳
7.1 大数据概念与Python中的应用
- 什么是大数据?如何将Python与大数据结合
- 使用PySpark与Dask处理大规模数据集
7.2 数据库与SQL基础:Python如何与数据库联动
- 使用SQLite与MySQL进行数据存储与操作
- Python与MongoDB与NoSQL的结合
第八部分:Python与深度学习——数据分析的“未来”之路
8.1 深度学习简介:用数据解锁未来的“黑盒”
- 什么是深度学习?如何使用Python探索深度学习的奇妙世界
- 使用Keras与TensorFlow实现神经网络模型
8.2 神经网络与模型训练
- 构建与训练深度神经网络:从线性回归到深度网络
- 深度学习中的数据预处理与增强技术
8.3 实战:图像识别与自然语言处理
- 使用深度学习处理图像数据:让Python“看见”世界
- 使用深度学习处理文本数据:让Python“听懂”语言
附录:实用资源与学习资料
A1. Python数据分析常用库介绍
- Pandas、Matplotlib、Seaborn、NumPy、Scikit-learn等的实用参考
A2. 学习资源
- 在线课程、开源数据集、学习平台推荐
A3. 实用工具与插件
- Jupyter Notebook与Colab的高效使用