洛谷 P8687 [蓝桥杯 2019 省 A] 糖果 状压dp

题目分析

如果通过暴力递归,用每一袋取或不取两种状态遍历分析每一种情况,则时间复杂度为 2^{n} ,显然超时。于是,可以采用状态压缩优化。

观察到,糖果的种类最多有20个,小于32,那么可以用二进制表示糖果的种类,进而表示每一袋糖果的状态。用 i 表示二进制下糖果的状态(如 1010 表示共四种糖果且获得第二种和第四种糖果的情况) dp[i] 表示达到状态 i 所需的最小数量,a[j] 表示第 j 袋糖果的状态,就可以得到状态转移方程:

dp[i|a[j]] = min(dp[i|a[j]],dp[i]+1)

那么只需要输出 dp[1(<<m)]即可。

代码实现

#include <iostream>
#include <cstring>
using namespace std;
int n, m, k, t, a[110] = {}, dp[1050000] = {};
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> m >> k;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < k; j++) {
            cin >> t;
            a[i] |= (1 << (t - 1));//将第 i 袋糖果的二进制下状态求出
        }
    }
    for (int i = 0; i < (1 << m); i++)dp[i] = -1;//初始化dp数组
    dp[0] = 0;
    for (int i = 0; i < (1 << m); i++) {
        for (int j = 0; j < n; j++) {
            if (dp[i] != -1) {//如果状态 i 被到达过
                if (dp[i | a[j]] == -1 || dp[i | a[j]] > dp[i] + 1)dp[i | a[j]] = dp[i] + 1;//状态转移
            }
        }
    }
    cout << dp[(1 << m) - 1];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值