【计算几何】点和直线

直线的参数方程:P=P_0+tv
P_0表示直线上一点,v表示方向向量,它的长度没有意义,t是参数。

有这个我们很容易知道两点(A,B)直线方程:A+(B-A)t
这个方程不仅适用与直线。对于射线,t>0;对于线段,1>t>0.

直线定义:

struct Line 
{ 
    Point P; Vector v; 
    Line (Point P=0, Vector v=0):P(P),v(v) { }
};

直线交点:

Point GetLineIntersection(Line l, Line m)//先判断直线是否重合
{
    Vector u=l.P-m.P;
    double t=Cross(m.v,u)/Cross(l.v,m.v);
    return l.P+l.v*t;
}

设两条直线的方程分别为P+tv和Q+tw,设向量u=P-Q,交点在第一条直线上的参数为t1,在第二条直线上的参数为t2,解关于x,y的方程解得:
t1=Cross(w,u)/Cross(v,w); t2=Cross(v,u)/Cross(v,w).

点到直线的距离:

//为了方便,下面代码用两点式表示直线
double DistanceToLine(Point P, Point A, Point B)
{
    Vector v1=B-A,v2=P-A;
    return fabs(Cross(v1,v2)/Length(v1));
}

点到线段的距离:

//加上特判:不在线段“正上方”的情况。
double DistanceToSegment(Point P, Point A, Point B)
{
    if (A==B) return Length(P-A);
    Vector v1=B-A,v2=P-A,v3=P-B;
    if (dcmp(Dot(v1,v2))<0) return Length(v2);//左边
    if (dcmp(Dot(v1,v3))>0) return Length(v3);//右边
    return fabs(Cross(v1,v2)/Length(v1));
}

点在直线上的投影:

Point GetLineProjection(Point P, Point A, Point B)
{
    Vector v=B-A;
    return A+v*Dot(v,P-A)/Dot(v,v);
}

线段相交判定:

//判断是否在顶点处相交
bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0; }
//判断是否严格相交(不含定点)
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
{
    double c1=Cross(a2-a1,b1-a1), c2=Cross(a2-a1,b2-b1),
           c3=Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值