图像缩放双线性插值算法

插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。


最邻近插值(近邻取样法):
  最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高


双线性内插值:
  对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

    f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)

其中f(i,j)表示源图像(i,j)处的的像素值,以此类推
  这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊

 


  三次卷积法能够克服以上两种算法的不足,计算精度高,但计算亮大,他考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目的像素值f(i+u,j+v)可由如下插值公式得到:

    f(i+u,j+v) = [A] * [B] * [C]

[A]=[ S(u + 1) S(u + 0) S(u - 1) S(u - 2) ]

  ┏ f(i-1, j-1) f(i-1, j+0) f(i-1, j+1) f(i-1, j+2) ┓
[B]=┃ f(i+0, j-1) f(i+0, j+0) f(i+0, j+1) f(i+0, j+2) ┃
  ┃ f(i+1, j-1) f(i+1, j+0) f(i+1, j+1) f(i+1, j+2) ┃
  ┗ f(i+2, j-1) f(i+2, j+0) f(i+2, j+1) f(i+2, j+2) ┛

  ┏ S(v + 1) ┓
[C]=┃ S(v + 0) ┃
  ┃ S(v - 1) ┃
  ┗ S(v - 2) ┛

   ┏ 1-2*Abs(x)^2+Abs(x)^3      , 0<=Abs(x)<1
S(x)={ 4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3 , 1<=Abs(x)<2
   ┗ 0                , Abs(x)>=2
S(x)是对 Sin(x*Pi)/x 的逼近(Pi是圆周率——π)


最邻近插值(近邻取样法)、双线性内插值、三次卷积法 等插值算法对于旋转变换、错切变换、一般线性变换 和 非线性变换 都适用。

 
双线性插值算法是一种常用的图像缩放方法,可以在缩放过程中保持图像的平滑性和细节信息。下面是使用C语言实现双线性插值算法的代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define CHANNELS 3 // 图像通道数 #define SCALE 2 // 缩放倍数 // 双线性插值算法 void bilinear_interpolation(unsigned char *input, unsigned char *output, int width, int height, int channels, float scale) { int new_width = (int)(width * scale); int new_height = (int)(height * scale); float x_ratio = (float)(width - 1) / (float)(new_width - 1); float y_ratio = (float)(height - 1) / (float)(new_height - 1); for (int i = 0; i < new_height; i++) { for (int j = 0; j < new_width; j++) { float x = j * x_ratio; float y = i * y_ratio; int x1 = (int)x; int y1 = (int)y; int x2 = x1 + 1; int y2 = y1 + 1; float fx = x - x1; float fy = y - y1; for (int k = 0; k < channels; k++) { float p1 = input[(y1 * width + x1) * channels + k]; float p2 = input[(y1 * width + x2) * channels + k]; float p3 = input[(y2 * width + x1) * channels + k]; float p4 = input[(y2 * width + x2) * channels + k]; float value = (1 - fx) * (1 - fy) * p1 + fx * (1 - fy) * p2 + (1 - fx) * fy * p3 + fx * fy * p4; output[(i * new_width + j) * channels + k] = (unsigned char)value; } } } } int main() { FILE *fp_in, *fp_out; unsigned char *input, *output; int width, height; fp_in = fopen("input.bmp", "rb"); if (fp_in == NULL) { printf("Error: cannot open input file!\n"); return -1; } // 读取BMP文件头 fseek(fp_in, 18, SEEK_SET); fread(&width, sizeof(int), 1, fp_in); fread(&height, sizeof(int), 1, fp_in); // 计算图像数据大小 int size = width * height * CHANNELS; // 分配内存并读取图像数据 input = (unsigned char*)malloc(size); fread(input, sizeof(unsigned char), size, fp_in); // 缩放图像 int new_width = (int)(width * SCALE); int new_height = (int)(height * SCALE); output = (unsigned char*)malloc(new_width * new_height * CHANNELS); bilinear_interpolation(input, output, width, height, CHANNELS, SCALE); // 写入输出文件 fp_out = fopen("output.bmp", "wb"); if (fp_out == NULL) { printf("Error: cannot open output file!\n"); return -1; } fwrite(input, sizeof(unsigned char), size, fp_out); fclose(fp_out); // 释放内存 free(input); free(output); return 0; } ``` 上面的代码使用双线性插值算法实现了图像缩放,输入图像为BMP格式,输出图像也是BMP格式。在实际应用中,还需要考虑图像的边缘处理、颜色空间转换等问题。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值