7-29 二分法求多项式单根 (20 分),浙大翁恺C语言课程PAT平台练习题
二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。
二分法的步骤为:
检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式在给定区间[a,b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数a3,a2,a1,a0
在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:
3 -1 -3 1
-0.5 0.5
结尾无空行
输出样例:
0.33
结尾无空行
解题思路:
题目中很明确给出了二分法的步骤,按照要求来。
题目没有说明4个系数a3,a2,a1,a0是什么数据类型,亲自测试int型不能过,改成double过了
注意判断同号的方法,以及a、b端点处取得根的情况;
由于C语言两个double类型不能判断是否相等,因此用距离来进行判断。
代码如下,已过pat平台:
#include <stdio.h>
double fx(double a3,double a2,double a1,double a0,double x);
int main()
{
double a=0,b=0