半数集问题

问题描述:
给定一个自然数n,由n 开始可以依次产生半数集set(n)中的数如下。
(1) n∈set(n);
(2) 在n 的左边加上一个自然数,但该自然数不能超过最近添加的数的一半;
(3) 按此规则进行处理,直到不能再添加自然数为止。
例如,set(6)={6,16,26,126,36,136}。半数集set(6)中有6 个元素。

注意半数集是多重集。


分析:递归法不需多说,只是简单地将每次的半数集累加起来,因为半数集最少也是元素个数本身,所以sum = 1;因为左面的数不能超过本数的一半,所以有一个循环语句:for(int i=1;i<=n/2;i++)   ,然后进行累加:sum=sum+f(i)。

 技巧法是采用这个问题的一些规律:f(n) = f(n/2 * 2 - 1) + f(n/2);比如:f(6) =f(6/2 *2 -1) + f(6/2) = f(5) + f(3) = 4+2=6;f(7) = f(7/2 * 2 - 1) + f(7/2) = f(5) + f(3) = 4 + 2 = 6;或许你会纳闷,为什么要 n/2 * 2呢?因为n是int型的,n/2也是int型的,所以不论n是偶数或者奇数,都会向下取整,按照偶数来算。具体说的可能不太清晰,你可以代入几个数试一试,没有你想象的那么复杂......



递归法(普通):

#include<stdio.h>
int f(int n){
	int sum=1;
	if(n==1)
		return 1;
	else
		for(int i=1;i<=n/2;i++){
			sum += f(i);
		}
		return sum;
}
int main(){
	
	int n = 0;
	printf("请输入一个自然数:");
	scanf("%d",&n);
	printf("其半数集的元素个数为%d个\n",f(n));
	
	return 0;
}

技巧法(规律):

#include<stdio.h>
#define N 1000
int asd[N];
int main(){
	int i, j;
	for(i = 2,asd[1]=1;i < N; i++){  
		j = i / 2;
		asd[i] = asd[j * 2 - 1] + asd[j];
	}
	
	int n = 0;
	printf("请输入一个自然数:");
	scanf("%d",&n);
	printf("其半数集的元素个数为%d个\n",asd[n]);
	
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值