问题描述:
给定一个自然数n,由n 开始可以依次产生半数集set(n)中的数如下。
(1) n∈set(n);
(2) 在n 的左边加上一个自然数,但该自然数不能超过最近添加的数的一半;
(3) 按此规则进行处理,直到不能再添加自然数为止。
例如,set(6)={6,16,26,126,36,136}。半数集set(6)中有6 个元素。
技巧法(规律):
给定一个自然数n,由n 开始可以依次产生半数集set(n)中的数如下。
(1) n∈set(n);
(2) 在n 的左边加上一个自然数,但该自然数不能超过最近添加的数的一半;
(3) 按此规则进行处理,直到不能再添加自然数为止。
例如,set(6)={6,16,26,126,36,136}。半数集set(6)中有6 个元素。
注意半数集是多重集。
分析:递归法不需多说,只是简单地将每次的半数集累加起来,因为半数集最少也是元素个数本身,所以sum = 1;因为左面的数不能超过本数的一半,所以有一个循环语句:for(int i=1;i<=n/2;i++) ,然后进行累加:sum=sum+f(i)。
技巧法是采用这个问题的一些规律:f(n) = f(n/2 * 2 - 1) + f(n/2);比如:f(6) =f(6/2 *2 -1) + f(6/2) = f(5) + f(3) = 4+2=6;f(7) = f(7/2 * 2 - 1) + f(7/2) = f(5) + f(3) = 4 + 2 = 6;或许你会纳闷,为什么要 n/2 * 2呢?因为n是int型的,n/2也是int型的,所以不论n是偶数或者奇数,都会向下取整,按照偶数来算。具体说的可能不太清晰,你可以代入几个数试一试,没有你想象的那么复杂......
递归法(普通):
#include<stdio.h>
int f(int n){
int sum=1;
if(n==1)
return 1;
else
for(int i=1;i<=n/2;i++){
sum += f(i);
}
return sum;
}
int main(){
int n = 0;
printf("请输入一个自然数:");
scanf("%d",&n);
printf("其半数集的元素个数为%d个\n",f(n));
return 0;
}
技巧法(规律):
#include<stdio.h>
#define N 1000
int asd[N];
int main(){
int i, j;
for(i = 2,asd[1]=1;i < N; i++){
j = i / 2;
asd[i] = asd[j * 2 - 1] + asd[j];
}
int n = 0;
printf("请输入一个自然数:");
scanf("%d",&n);
printf("其半数集的元素个数为%d个\n",asd[n]);
return 0;
}