2.1 基本概念
从数学的角度看,机器学习的目标是建立输入和输出的函数关系,相当于 y = F(x)的过程。F(x)就是我们所说的模型,对于使用者来说,这个模型就是一个黑箱,我们不知道其具体的结构,但是给定一个输出,就可以得到我们想要的结果。F(x)的获得,我们通过的是实验法啊,经过大量数据训练出来的,我们定义一个损失函数L(x),记录真实输出与模型输出的偏差,通过数据的迭代使得损失函数L(x)达到最小。
在机器学习中,我们需要理解概念的术语的解释:
训练样本 | 用于训练的数据 |
训练 | 用于训练样本特征统计和归纳的过程 |
模型 | 总结出的规律、标准 |
验证 | 用于验证数据集评价模型是否准确 |
超参数 | 学习速率、迭代层神经元个数等 |
参数 | 权重、偏置等 |
泛化 | 模型对新样本的适应力 |
过拟合和欠拟合是常见的现象。但是需要说明的是,数据没有过多的这种说法,所谓的过拟合,是模型在训练集上的表现过于