Ubuntu 18.04 GT610 Cuda8.0 Caffe环境搭建

本文档详细介绍了在Ubuntu 18.04上安装NVIDIA GT610显卡驱动、CUDA 8.0 Toolkit、OpenCV 3.4.3以及Caffe的步骤。包括禁用Nouveau驱动、配置环境变量、编译OpenCV和Caffe等关键步骤,同时解决了c++11编译问题和python import caffe时的错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装前操作

  1. 验证系统是否具有支持CUDA的GPU
     确定显卡型号:
      查看系统属性,或者从命令行输入:
        $ lspci | grep -i nvidia
        只有NVIDIA显卡,并且能在 http://developer.nvidia.com/cuda-gpus 找到对应型号,那么该GPU就支持CUDA功能。

  2. GPU和CUDA Toolkit的对应版本确认
    支持GPU的驱动版本:
      https://www.nvidia.cn/object/unix-cn.html
    CUDA Toolkit版本与GPU版本对应信息:
      CUDA和显卡驱动对应信息
      信息来源:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
      相对较早的GPU,建议GPU支持的驱动版本和CUDA Toolkit版本都尽量选择对应较低的版本号,否则可能导致后面Caffe在运行时出现异常。

    验证系统是否正在运行受支持的Linux版本
      根据不同版本CUDA Toolkit,确定是否支持CUDA Toolkit。
      例如CUDA Toolkit v8.0:
      在这里插入图片描述
      信息来源:https://docs.nvidia.com/cuda/archive/8.0/cuda-installation-guide-linux/index.html

    验证系统是否已安装gcc
      查看gcc版本:
        $ gcc --version
      验证系统是否安装了正确的内核头文件和开发包。
        查看正在运行的分发和版本号:
          $ uname -m && cat /etc/*release
        或者,过运行以下命令找到系统正在运行的内核版本:
          $ uname -r
      如果没有任何信息显示,可以使用以下命令安装当前运行的内核的内核头文件和开发包:
        $ sudo apt-get install linux-headers - $(uname -r)

安装显卡驱动

  虽然在安装CUDA Toolkit会提供对应的驱动版本,但仍建议自行查找合适的驱动安装,因为CUDA Toolkit自带的驱动不一定是适合当前GPU的版本。
  需要下载以下package:
    GPU驱动:NVIDIA-Linux-x86_64-390.87.run
禁用Nouveau
  要安装显示驱动程序,必须首先禁用Nouveau驱动程序。Linux的每个发行版都有不同的方法来禁用Nouveau。
  创建文件:
    $ sudo vi /etc/modprobe.d/blacklist-nouveau.conf
  输入一下信息并保存:
    blacklist nouveau
    options nouveau modeset=0
  重新生成内核initramfs:
    $ sudo update-initramfs -u
  输入一下命令,查看是否禁用成功:
    $ lspci | grep nouveau
  没有任何信息显示,则表示禁用成功。如果此方法不能禁用成功,则可以选择以下方式:
    直接移除这个驱动(备份出来):
      $ mv /lib/modules/3.0.0-12-generic/kernel/drivers/gpu/drm/nouveau/nouveau.ko /lib/modules/3.0.0-12-generic/kernel/drivers/gpu/drm/nouveau/nouveau.ko.org
  重新加载一下
    $ sudo update-initramfs -u
  重启:
    $ sudo reboot

  显示器字体有明显变大模糊的情况。

安装驱动
  执行安装:
    $ sudo sh NVIDIA-Linux-x86_64-390.87.run
  运行安装文件过程中如果提示you appear to be running an x server;的类似错误,请运行以下命令进行关闭:
    $ sudo /etc/init.d/lightdm stop
  检查是否安装成功:
    $ cat /proc/driver/nvidia/version
    显示如下信息:
    在这里插入图片描述
    则安装成功。

安装CUDA Toolkit

  CUDA Toolkit的安装有多种方式,我们采用最可控的一种,runfile install(运行文件安装)。
  需要下载以下package:
    CUDA Toolkit工具包:cuda_8.0.61_375.26_linux.run
  官方建议GPU算力在3.0以下,不要安装Cudnn。因此,我们这次的环境搭建中不支持Cudnn(GT610算力为2.1,可在 http://developer.nvidia.com/cuda-gpus 查询相关信息)。
  确保显卡安装成功的前提下,进行CUDA Toolkit安装。
    $ sudo sh cuda_8.0.61_375.26_linux.run --no-opengl-libs //不安装opengl

  配置安装选项:

在这里插入图片描述
  显示如下信息,则是安装运行成功:
在这里插入图片描述

  配置环境变量:

    $ sudo vi ~/.bashrc
    将如下内容保存至.bashrc:
    export PATH=/usr/local/cuda/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
    执行生效:
    $ source ~/.bashrc

  检验CUDA 是否安装成功:

    cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
    sudo make
    ./deviceQuery

    显示Result = PASS,则表示安装成功:在这里插入图片描述
    如果没有成功,则需要卸载后重新install。
  以上安装内容,参考 https://docs.nvidia.com/cuda/archive/8.0/cuda-installation-guide-linux/index.html#runfile 第4章节和 https://blog.csdn.net/qq473179304/article/details/79444609

安装OpenCV3.4.3(含opencv_contrib)

  因为需要包含opencv_contrib的一些模块,所以OpenCV采用源码编译安装。

  安装FFmpeg

  鉴于OpenCV对FFmpeg的依赖,需要先安装FFmpeg。
    $ git clone https://github.com/FFmpeg/FFmpeg.git
    $ git checkout n3.4.5 // checkout到一个可以支持opencv3.4.3的任一版本
    $ ./configure --enable-shared // 需要编译成静态库
    $ make
    $ sudo make install

  安装Opencv

  opencv_contrib模块源码克隆:git clone https://github.com/opencv/opencv_contrib.git
  切换到指定版本:
    cd ~/opencv_contrib // 进入到opencv_contrib源码路径
    git checkout 3.4.3 // 切换到分支3.4.3

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值