1 创建Series和DataFrame
- DataFrame和Series是Pandas最基本的两种数据结构
- DataFrame和Series的区别联系:在Pandas中,Series是一维容器,Series表示DataFrame的每一列
- 可以吧DataFrame看作由Series对象组成的字典,其中key是列名,值是Series
- Series和Python中的列表非常相似,但是他的每个元素的数据必须相同
1.1 创建Series
- 创建Series的最简单的方法是传入一个Python列表
-
import pandas as pd s = pd.Series(['banana', 42]) print(s) s = pd.Series(['banana', 'apple']) print(s) s = pd.Series([50, 42]) print(s) ''' 输出结果如下 0 banana 1 42 dtype: object 0 banana 1 apple dtype: object 0 50 1 42 dtype: int64 上面的结果中,左边显示的0, 1 是series的索引,默认是0,1,2,3...... ''' -
-
如果传入的数据类型是统一的数字,那么最终的dtype类型是int64
-
如果传入的数据类型是统一的字符串,那么最终的dtype类型是object
-
如果传入的数据类型是多种类型,那么最终的dtype类型也是object
-
- 创建series时,也可以通过index参数,来指定行索引
-
s = pd.Series(['Wes McKinney','Male'],index = ['Name','Gender']) print(s) """ 输出结果如下 Name Wes McKinney Gender Male dtype: object """1.2 创建 DataFrame
- 可以使用字典来创建DataFrame
name_df = pd.DataFrame({
'Name':['Tome','Bob'],
'Occupation':['Teacher','IT Engineer'],
'age':[28,36]
})
print(name_df)
'''
输出结果如下
Name Occupation age
0 Tome Teacher 28
1 Bob IT Engineer 36
'''
- 创建DataFrame的时候可以使用colums参数指定列的顺序,也可以使用index来指定行索引
-
name_df = pd.DataFrame( data={ 'Occupation': ['Teacher', 'IT Engineer'], 'Age': [28,36] }, columns=['Age', 'Occupation'], index=['Tome', 'Bob'] ) print(name_df) ''' 输出结果如下 Age Occupation Tome 28 Teacher Bob 36 IT Engineer '''

被折叠的 条评论
为什么被折叠?



