Codevs 1243 网络提速

Problem

Description

某学校的校园网由n台计算机组成,计算机之间由网线相连,如图5。其中顶点代表计算机,边代表网线。正如你所见,不同网线的传输能力不尽相同,例如计算机1与计算机2之间传输信息需要34秒,而计算机2与计算机3之间的传输信息只要10秒。计算机1与计算机5之间传输信息需要44秒,途径为机1到机3到机5。
现学校购买了m台加速设备,每台设备可作用于一条网线,使网线上传输信息用时减半。多台设备可用于同一条网线,其效果叠加,即用两台设备,用时为原来的1/4,用三台设备,用时为原来的1/8。如何合理使用这些设备,使计算机1到计算机n传输用时最少,这个问题急需解决。校方请你编程解决这个问题。例如图5,若m=2,则将两台设备分别用于1-3,3-5的线路,传输用时可减少为22秒,这是最佳解。

Input Description

第一行先输入n,m。以下n行,每行有n个实数。第i行第j列的数为计算机i与计算机j之间网线的传输用时,0表示它们之间没有网线连接。注意输入数据中,从计算机1到计算机n至少有一条网路。

Output Description

输出计算机1与计算机n之间传输信息的最短时间。(保留两位小数)

Sample Input

5 2
0 34 24 0 0
34 0 10 12 0
24 10 0 16 20
0 12 16 0 30
0 0 20 30 0

Sample Output

22.00

Date Size

1<=n<=50;1<=m<=10

Solution

明显的水题……尤其数据特水。看到m的范围,我还以为是状压DP……
我的想法是,设置dis[i][j]表示从1号电脑到i号电脑用了j台加速设备的最小时间,用SPFA维护。然后其状态转移方程如下:

dis[y][0]=min(dis[x][0]+w);dis[y][i]=min(dis[x][ij]+pow(0.5,j)w)

但是看了看题解,发现大家的思路竟然都是Dijkstra/SPFA+贪心,先跑出一个最短路径,再在这条路径上寻找最长边,然后对其使用加速设备,然后再继续寻找直到加速设备用完。乍一看,好像挺有道理的,但是其实这是错误的,我们可以给出一个反例:
Sample Input
4 1
0 2 0 8
2 0 2 0
0 2 0 2
8 0 2 0
Sample Output
4.00
Wrong Answer
5.00

这个时候虽然走1->2->3->4是最短的路线,为6,但是对这条线路用1个加速器,只能使得路线降为5。其实不然,明显可以发现1->4这条路线虽然为8,但用了加速器之后,路线降为4,比5更优。
但题解上也有对的,比如Solution_ID:22648加强数据. 的说法就是对的。果然又再一次印证了“很多DP题目看起来都可以用贪心,但往往都会错”至理名言。

好题+超强数据=神题
好题+强数据=好题
好题+水数据=水题

Code

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=55,maxm=12,INF=0x3f3f3f3f;
struct data{
    int v,nxt;
    double w;
}edge[5010];
queue<int> q;
int n,m,p,head[maxn];
double dis[maxn][maxm];
bool inq[maxn];
double rpow(double x,int y)
{
    double ans=1;
    while(y)
    {
        if(y&1)
          ans*=x;
        x*=x;
        y>>=1;
    }
    return ans;
}
void add(int u,int v,double w)
{
    edge[++p].v=v;
    edge[p].w=w;
    edge[p].nxt=head[u];
    head[u]=p;
    edge[++p].v=u;
    edge[p].w=w;
    edge[p].nxt=head[v];
    head[v]=p;
}
void input()
{
    double w;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
      {
        scanf("%lf",&w);
        if(w)
          add(i,j,w);
      }
}
void spfa()
{
    int x,y;
    double w,t;
    q.push(1);
    inq[1]=true;
    for(int i=0;i<=n;i++)
      for(int j=0;j<=m;j++)
        dis[i][j]=INF;
    for(int i=0;i<=m;i++)
      dis[1][i]=0;
    while(!q.empty())
    {
        x=q.front();
        q.pop();
        inq[x]=false;
        for(int i=head[x];i;i=edge[i].nxt)
        {
            y=edge[i].v,w=edge[i].w;
            if(dis[x][0]+w<dis[y][0])
            {
                dis[y][0]=dis[x][0]+w;
                if(!inq[y])
                  q.push(y),inq[y]=true;
            }
            for(int i=1;i<=m;i++)
              for(int j=1;j<=i;j++)
              {
                t=dis[x][i-j]+rpow(0.5,j)*w;
                if(t<dis[y][i])
                {
                    dis[y][i]=t;
                    if(!inq[y])
                      q.push(y),inq[y]=true;
                }
              }
        }
    }
}
int main()
{
    input();
    spfa();
    printf("%.2lf\n",dis[n][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值