Problem
Description
某学校的校园网由n台计算机组成,计算机之间由网线相连,如图5。其中顶点代表计算机,边代表网线。正如你所见,不同网线的传输能力不尽相同,例如计算机1与计算机2之间传输信息需要34秒,而计算机2与计算机3之间的传输信息只要10秒。计算机1与计算机5之间传输信息需要44秒,途径为机1到机3到机5。
现学校购买了m台加速设备,每台设备可作用于一条网线,使网线上传输信息用时减半。多台设备可用于同一条网线,其效果叠加,即用两台设备,用时为原来的1/4,用三台设备,用时为原来的1/8。如何合理使用这些设备,使计算机1到计算机n传输用时最少,这个问题急需解决。校方请你编程解决这个问题。例如图5,若m=2,则将两台设备分别用于1-3,3-5的线路,传输用时可减少为22秒,这是最佳解。
Input Description
第一行先输入n,m。以下n行,每行有n个实数。第i行第j列的数为计算机i与计算机j之间网线的传输用时,0表示它们之间没有网线连接。注意输入数据中,从计算机1到计算机n至少有一条网路。
Output Description
输出计算机1与计算机n之间传输信息的最短时间。(保留两位小数)
Sample Input
5 2
0 34 24 0 0
34 0 10 12 0
24 10 0 16 20
0 12 16 0 30
0 0 20 30 0
Sample Output
22.00
Date Size
1<=n<=50;1<=m<=10
Solution
明显的水题……尤其数据特水。看到m的范围,我还以为是状压DP……
我的想法是,设置dis[i][j]表示从1号电脑到i号电脑用了j台加速设备的最小时间,用SPFA维护。然后其状态转移方程如下:
但是看了看题解,发现大家的思路竟然都是Dijkstra/SPFA+贪心,先跑出一个最短路径,再在这条路径上寻找最长边,然后对其使用加速设备,然后再继续寻找直到加速设备用完。乍一看,好像挺有道理的,但是其实这是错误的,我们可以给出一个反例:
Sample Input
4 1
0 2 0 8
2 0 2 0
0 2 0 2
8 0 2 0
Sample Output
4.00
Wrong Answer
5.00
这个时候虽然走1->2->3->4是最短的路线,为6,但是对这条线路用1个加速器,只能使得路线降为5。其实不然,明显可以发现1->4这条路线虽然为8,但用了加速器之后,路线降为4,比5更优。
但题解上也有对的,比如Solution_ID:22648加强数据. 的说法就是对的。果然又再一次印证了“很多DP题目看起来都可以用贪心,但往往都会错”至理名言。
好题+超强数据=神题
好题+强数据=好题
好题+水数据=水题
Code
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=55,maxm=12,INF=0x3f3f3f3f;
struct data{
int v,nxt;
double w;
}edge[5010];
queue<int> q;
int n,m,p,head[maxn];
double dis[maxn][maxm];
bool inq[maxn];
double rpow(double x,int y)
{
double ans=1;
while(y)
{
if(y&1)
ans*=x;
x*=x;
y>>=1;
}
return ans;
}
void add(int u,int v,double w)
{
edge[++p].v=v;
edge[p].w=w;
edge[p].nxt=head[u];
head[u]=p;
edge[++p].v=u;
edge[p].w=w;
edge[p].nxt=head[v];
head[v]=p;
}
void input()
{
double w;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%lf",&w);
if(w)
add(i,j,w);
}
}
void spfa()
{
int x,y;
double w,t;
q.push(1);
inq[1]=true;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
dis[i][j]=INF;
for(int i=0;i<=m;i++)
dis[1][i]=0;
while(!q.empty())
{
x=q.front();
q.pop();
inq[x]=false;
for(int i=head[x];i;i=edge[i].nxt)
{
y=edge[i].v,w=edge[i].w;
if(dis[x][0]+w<dis[y][0])
{
dis[y][0]=dis[x][0]+w;
if(!inq[y])
q.push(y),inq[y]=true;
}
for(int i=1;i<=m;i++)
for(int j=1;j<=i;j++)
{
t=dis[x][i-j]+rpow(0.5,j)*w;
if(t<dis[y][i])
{
dis[y][i]=t;
if(!inq[y])
q.push(y),inq[y]=true;
}
}
}
}
}
int main()
{
input();
spfa();
printf("%.2lf\n",dis[n][m]);
return 0;
}