BZOJ 3675 APIO2014序列分割 斜率优化dp

#Problem
##Description
你正在玩一个关于长度为n的非负整数序列的游戏。这个游戏中你需要把序列分成k+1个非空的块。为了得到k+1块,你需要重复下面的操作k次:

选择一个有超过一个元素的块(初始时你只有一块,即整个序列)
选择两个相邻元素把这个块从中间分开,得到两个非空的块。

每次操作后你将获得那两个新产生的块的元素和的乘积的分数。你想要最大化最后的总得分。
##Input Description
第一行包含两个整数n和k。保证 k + 1 ≤ n k + 1 \leq n k+1n
第二行包含 n 个非负整数 a 1 , a 2 , ⋯   , a n ( 0 ≤ a i ≤ 1 0 4 ) a_1, a_2, \cdots, a_n(0 \leq a_i \leq 10^4) a1,a2,,an(0ai104),表示前文所述的序列。

##Output Description
第一行输出你能获得的最大总得分。
第二行输出 k 个介于 1 到 n-1 之间的整数,表示为了使得总得分最大,你每次操作中分开两个块的位置。第 i 个整数 s i s_i si 表示第 i 次操作将在 s i s_i si​ 和 s i + 1 s_{i + 1} si+1​ 之间把块分开。
如果有多种方案使得总得分最大,输出任意一种方案即可。(当然bzoj上其实不需要输出方案)
##Sample
Input
7 3
4 1 3 4 0 2 3
Output
108
1 3 5
##Hint
你可以通过下面这些操作获得108分:

初始时你有一块 (4, 1, 3, 4, 0, 2, 3)。在第 1 个元素后面分开,获得 4 × ( 1 + 3 + 4 + 0 + 2 + 3 ) = 52 4 \times (1 + 3 + 4 + 0 + 2 + 3) = 52 4×(1+3+4+0+2+3)=52 分。

你现在有两块 (4)(1, 3, 4, 0, 2, 3)。在第 3 个元素后面分开,获得 ( 1 + 3 ) × ( 4 + 0 + 2 + 3 ) = 36 (1 + 3) \times (4 + 0 + 2 + 3) = 36 (1+3)×(4+0+2+3)=36 分。

你现在有三块 (4), (1, 3), (4, 0, 2, 3)。在第 5 个元素后面分开,获得 ( 4 + 0 ) × ( 2 + 3 ) = 20 (4 + 0) \times (2 + 3) = 20 (4+0)×(2+3)=20 分。

所以,经过这些操作后你可以获得四块 (4), (1, 3), (4, 0), (2, 3) 并获得 52 + 36 + 20 = 108 52 + 36 + 20 = 108 52+36+20=108 分。

##Data Size
第一个子任务共 11 分,满足 1 ≤ k &lt; n ≤ 10 1 \leq k &lt; n \leq 10 1k<n10

第二个子任务共 11 分,满足 1 ≤ k &lt; n ≤ 50 1 \leq k &lt; n \leq 50 1k<n50

第三个子任务共 11 分,满足 1 ≤ k &lt; n ≤ 200 1 \leq k &lt; n \leq 200 1k<n200

第四个子任务共 17 分,满足 2 ≤ n ≤ 1000 , 1 ≤ k ≤ min ⁡ ( n − 1 , 200 ) 2 \leq n \leq 1000, 1 \leq k \leq \min{(n - 1, 200)} 2n1000,1kmin(n1,200)

第五个子任务共 21 分,满足 2 ≤ n ≤ 10000 , 1 ≤ k ≤ min ⁡ ( n − 1 , 200 ) 2 \leq n \leq 10000, 1 \leq k \leq \min{(n - 1, 200)} 2n10000,1kmin(n1,200)

第六个子任务共 29 分,满足 2 ≤ n ≤ 100000 , 1 ≤ k ≤ min ⁡ ( n − 1 , 200 ) 2 \leq n \leq 100000, 1 \leq k \leq \min{(n - 1, 200)} 2n100000,1kmin(n1,200)
#Solution
如果你还不知道斜率优化,安利一篇不错的blog

首先对于一个数列,若要将其分为三段,总和分别是a,b,c。有两种分法:
a ∗ ( b + c ) + b ∗ c = a ∗ b + a ∗ c + b ∗ c a*(b+c)+b*c=a*b+a*c+b*c a(b+c)+bc=ab+ac+bc
( a + b ) ∗ c + a ∗ b = a ∗ b + a ∗ c + b ∗ c (a+b)*c+a*b=a*b+a*c+b*c (a+b)c+ab=ab+ac+bc
经过推广,可以发现切的顺序对于结果没有影响。
既然如此,我们就可以方便地定义状态f[p][i]表示在前 i 之中切 p 刀的答案,则有
f [ p ] [ i ] = max ⁡ j &lt; i ( f [ p − 1 ] [ j ] + s u m [ j ] ∗ ( s u m [ i ] − s u m [ j ] ) ) f[p][i]=\max_{j&lt;i}{(f[p-1][j]+sum[j]*(sum[i]-sum[j]))} f[p][i]=j<imax(f[p1][j]+sum[j](sum[i]sum[j]))
至于当前方案的贡献为 s u m [ j ] ∗ ( s u m [ i ] − s u m [ j ] ) sum[j]*(sum[i]-sum[j]) sum[j](sum[i]sum[j])的原因,因为顺序对答案不影响,对于现在dp到i时,可以认为在还未进行dp的 [i+1,n] 的范围是已经切好了的,而之前dp出的最优方案是以后才切的,即从后往前切。不妨假令 j 为这 [1,i] 中的第一刀,那么这一刀对答案的贡献即为 s u m [ j ] ∗ ( s u m [ i ] − s u m [ j ] ) sum[j]*(sum[i]-sum[j]) sum[j](sum[i]sum[j])
这个朴素DP的时间复杂度为 O ( n 2 k ) O(n^2k) O(n2k),空间复杂度为 O ( n k ) O(nk) O(nk)。空间时间都炸了,妥妥的。

容易想到每一次的状态转移只与上一次有关,那么用滚动数组压成两维即可。
其次,方程中有前缀和,而数列为非负整数,那么前缀和是单调递增,容易想到斜率优化。为了方便表达,现在省去 f 数组的第一维,大家可以默认为下方公式中的 f 数组指上一次dp的状态,即 f[p-1]。
令现在有 j,k 两个位置,且选择 k 要优于选择 j 。
那么需要满足
f [ j ] + s u m [ j ] ∗ ( s u m [ i ] − s u m [ j ] ) ≤ f [ k ] + s u m [ k ] ∗ ( s u m [ i ] − s u m [ k ] ) f[j]+sum[j]*(sum[i]-sum[j])\leq f[k]+sum[k]*(sum[i]-sum[k]) f[j]+sum[j](sum[i]sum[j])f[k]+sum[k](sum[i]sum[k])
⇒ s u m [ i ] ≤ f [ k ] − s u m [ k ] 2 − f [ j ] + s u m [ j ] 2 s u m [ j ] − s u m [ k ] \Rightarrow sum[i]\leq \frac{f[k]-sum[k]^2-f[j]+sum[j]^2}{sum[j]-sum[k]} sum[i]sum[j]sum[k]f[k]sum[k]2f[j]+sum[j]2
然后由此算斜率优化。但是有一个坑点,就是数列为非负整数,因此有可能会出现 s u m [ j ] − s u m [ k ] = 0 sum[j]-sum[k]=0 sum[j]sum[k]=0,而除以一个0就RE/WA了!而对于这种情况,可以知道不管在不在这个地方切开对答案应该没有影响,所以特判一下,return一个极小/大值。
#Code

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=100010;
int n,k,x,r,h,t,to[210][maxn],q[maxn];
ll sum[maxn],f[2][maxn];
inline ll pow(ll a){return a*a;}
inline double slope(int j,int k)
{
	if(sum[j]==sum[k]) return -1e18;
	return (f[r&1^1][k]-pow(sum[k])-f[r&1^1][j]+pow(sum[j]))*1.0/(sum[j]-sum[k]);
}
int main()
{
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)scanf("%d",&x),sum[i]=sum[i-1]+x;
	for(r=1;r<=k;r++)
	{
		h=t=0;
		for(int i=1;i<=n;i++)
	    {
	    	while(h<t&&slope(q[h],q[h+1])<=sum[i]) h++;
	    	f[r&1][i]=f[r&1^1][q[h]]+sum[q[h]]*(sum[i]-sum[q[h]]);
	    	to[r][i]=q[h];
	    	while(h<t&&slope(q[t-1],q[t])>=slope(q[t],i)) t--;
	    	q[++t]=i;
	    }
	}
	printf("%lld\n",f[k&1][n]);
	for(int i=k,u=n;i>=1;i--)
	{
		u=to[i][u];
		printf("%d ",u);
	}
	return 0;
}
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值