Problem
SPOJ
求u到v的路径上有多少种不同的点权。
Solution
半年前挖的坑,现在来填了……
我们已经会序列莫队了,那么如果能把树上问题转成序列问题,问题就解决了,那就是欧拉序!
我们不妨记i第一次出现位置为in[i],第二次为out[i]。那么在询问区间中出现了两次的数必定是不会产生贡献的,根据欧拉序的性质,x和y之间路径不会经过它。则用一个桶记录编号为i的节点已经出现了几次,出现两次的节点需要减去它的贡献。
那么有这么两种情况:
- …x…x…y…y…询问[out[x],in[y]]
- …x…y…y…x…询问[in[x],in[y]]
但是仔细想想欧拉序的遍历方法,好像又有点不对,因为在第一种情况下,lca并不会出现在它们两之间的欧拉序列之中,特判加入即可。
Code
#include <algorithm>
#include <cstdio>
#include <cmath>
#define rg register
#define chkmid(l,m,r) ((l)<=(m)&&(m)<=(r))
using namespace std;
typedef long long ll;
const int maxn=40010,maxm=100010;
template <typename Tp> inline void getmin(Tp &x,Tp y){if(y<x) x=y;}
template <typename Tp> inline void getmax(Tp &x,Tp y){if(y>x) x=y;}
template <typename Tp> inline void read(Tp &x)
{
x=0;int f=0;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') f=1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
if(f) x=-x;
}
struct data{int v,nxt;}edge[maxn<<1];
struct query{
int l,r,blk,id;
bool operator < (const query &t)const{return blk==t.blk?r<t.r:blk<t.blk;}
}q[maxm];
int n,m,p,sqr,dfc,tmp,a[maxn],b[maxn],head[maxn],t[maxn],wt[maxn],ans[maxm];
int f[maxn],dep[maxn],sz[maxn],dfn[2][maxn],top[maxn],hs[maxn],xu[maxn<<1];
inline int insert(int u,int v)
{
edge[++p]=(data){v,head[u]};head[u]=p;
edge[++p]=(data){u,head[v]};head[v]=p;
}
void dfs1(int x)
{
sz[x]=1;dep[x]=dep[f[x]]+1;dfn[0][x]=++dfc;xu[dfc]=x;
for(int i=head[x];i;i=edge[i].nxt)
if(edge[i].v^f[x])
{
f[edge[i].v]=x;
dfs1(edge[i].v);
sz[x]+=sz[edge[i].v];
if(sz[edge[i].v]>sz[hs[x]]) hs[x]=edge[i].v;
}
dfn[1][x]=++dfc;xu[dfc]=x;
}
void dfs2(int x,int s)
{
top[x]=s;
if(hs[x]) dfs2(hs[x],s);
for(int i=head[x];i;i=edge[i].nxt)
if(edge[i].v^f[x]&&edge[i].v^hs[x])
dfs2(edge[i].v,edge[i].v);
}
int getlca(int x,int y)
{
int fx=top[x],fy=top[y];
while(fx^fy)
{
if(dep[fx]<dep[fy]) swap(x,y),swap(fx,fy);
x=f[fx];fx=top[x];
}
return dep[x]<dep[y]?x:y;
}
void input()
{
int tot,x,y;
read(n);read(m);sqr=(int)sqrt((double(n+n)));
for(rg int i=1;i<=n;i++) read(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
tot=unique(b+1,b+n+1)-b-1;
for(rg int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+tot+1,a[i])-b;
for(rg int i=1;i<n;i++){read(x);read(y);insert(x,y);}
dfs1(1);dfs2(1,1);
for(rg int i=1;i<=m;i++)
{
read(x);read(y);
if(dfn[0][x]>dfn[0][y]) swap(x,y);
if(chkmid(dfn[0][x],dfn[0][y],dfn[1][x]))
q[i].l=dfn[0][x],q[i].r=dfn[0][y];
else q[i].l=dfn[1][x],q[i].r=dfn[0][y];
if(q[i].l>q[i].r) swap(q[i].l,q[i].r);
q[i].blk=(q[i].l-1)/sqr+1;q[i].id=i;
}
sort(q+1,q+m+1);
}
void update(int x)
{
if(t[x])
{
wt[a[x]]--;
if(!wt[a[x]]) tmp--;
}
else
{
if(!wt[a[x]]) tmp++;
wt[a[x]]++;
}
t[x]^=1;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int l=1,r=0,lca;
input();
for(rg int i=1;i<=m;i++)
{
while(l>q[i].l) update(xu[--l]);
while(r<q[i].r) update(xu[++r]);
while(l<q[i].l) update(xu[l++]);
while(r>q[i].r) update(xu[r--]);
lca=getlca(xu[q[i].l],xu[q[i].r]);
if(lca^xu[q[i].l]&&lca^xu[q[i].r]){update(lca);ans[q[i].id]=tmp;update(lca);}
else ans[q[i].id]=tmp;
}
for(rg int i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}