BZOJ 3129 方程[SDOI2013]

Problem

BZOJ
洛谷

预备知识

这里介绍一下扩展Lukas定理……当然
可以在p不是质数时计算 Cmnmodp C n m mod p

首先将p分解质因数。不妨令:

p=i=1rpeii p = ∏ i = 1 r p i e i

每个 paii p i a i 单独计算,解出相应的xi,则有一组形似 ansmodpeii=xi a n s mod p i e i = x i 的方程,对于这个方程,用中国剩余定理合并即可得到最终的答案。

那么我们就讨论一下如何单独计算
据说用逆元的那个方法好像并不可以???其实我也不知道可不可以(逃)
那么按照组合数的定义式 Cmn=n!m!(nm)! C n m = n ! m ! ( n − m ) !
我们就需要求出这三个阶乘
不妨令

n!=t1pu1i,m!=t2pu2i,(nm)!=t3pu3i n ! = t 1 ∗ p i u 1 , m ! = t 2 ∗ p i u 2 , ( n − m ) ! = t 3 ∗ p i u 3

然后就可以把pi提取出来,则有
Cmn=t1inv(t2)inv(t3)pu1u2u3i C n m = t 1 ∗ i n v ( t 2 ) ∗ i n v ( t 3 ) ∗ p i u 1 − u 2 − u 3

当我们对 n!=123...n n ! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ n 提取出pi,那么可以得到的即是n以内所有pi的倍数,分别是 pi,2pi,3pi...npipi p i , 2 ∗ p i , 3 ∗ p i . . . ∗ ⌊ n p i ⌋ ∗ p i
设其余不可提取的乘积为A,即答案为
Apnpii(123...npi) A ∗ p i ⌊ n p i ⌋ ∗ ( 1 ∗ 2 ∗ 3 ∗ . . . ∗ ⌊ n p i ⌋ )

注意到发现括号内又是一个阶乘的形式,递归求解即可。

Solution

先考虑没有限制条件的情况,题目转化为,将m个皮球放入n个框,要求每个框内球的个数不能为空。采用插板法即可得方法数有 Cn1m1 C m − 1 n − 1
对于形似 xiai x i ≥ a i 的限制条件,先转化为 xi>ai1 x i > a i − 1 。然后考虑,先从m个球里拿出ai-1个球,然后还是任意分配,最后把开始拿出的球全部放到xi的框里去就可以保证一定满足条件。
对于形似 xiai x i ≤ a i 的限制条件,容斥一下再乱搞。

但是洛谷上TLE了TAT,先填个坑吧,可能晚上再改改???

Code

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=100010;
ll ans,tmp;
int z,mod,l,tot,n,n1,n2,m,x;
int a[maxn],p[maxn],e[maxn],w[maxn],pri[maxn],vis[maxn],phi[maxn];
ll power(ll x,int y)
{
    ll res=1;
    while(y)
    {
        if(y&1) res=res*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return res;
}
void getpri()
{
    for(int i=2;i<=100000;i++)
    {
        if(!vis[i]) pri[++tot]=i;
        for(int j=1;j<=tot&&i*pri[j]<=100000;j++)
        {
            vis[i*pri[j]]=1;
            if(i%pri[j]==0) break;
        }
    }
}
void divide(int x)
{
    for(int i=1;i<=tot;i++)
      if(x%pri[i]==0)
      {
        p[++l]=pri[i];w[l]=1;
        while(x%pri[i]==0) w[l]*=pri[i],e[l]++,x/=pri[i];
      }
    for(int i=1;i<=l;i++) phi[i]=w[i]/p[i]*(p[i]-1);
}
ll getc(int p,int w,int x)
{
    if(!x) return 1;
    ll sum=1,res=1;
    for(int i=0;i<w;i++)
    {
        if(i%p) sum=sum*i%w;
        if(i==x%w) res=sum;
    }
    res=res*power(sum,x/w)%w;
    return res*getc(p,w,x/p)%w;
}
ll getk(int p,int w,int x)
{
    if(!x) return 0;
    return x/p+getk(p,w,x/p);
}
ll C(int n,int m,int k)
{
    if(n<0||m<0||n<m) return 0;
    ll res=getc(p[k],w[k],n);
    res=res*power(getc(p[k],w[k],m),phi[k]-1)%w[k];
    res=res*power(getc(p[k],w[k],n-m),phi[k]-1)%w[k];
    int tot=getk(p[k],w[k],n);
    tot-=getk(p[k],w[k],m)+getk(p[k],w[k],n-m);
    res=res*power(p[k],tot)%w[k];
    return res;
}
int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    #endif
    scanf("%d%d",&z,&mod);
    getpri();divide(mod);
    while(z--)
    {
        scanf("%d%d%d%d",&n,&n1,&n2,&m);
        for(int i=0;i<n1;i++) scanf("%d",&a[i]);
        for(int i=0;i<n2;i++) scanf("%d",&x),m-=x-1;
        if(m<=0||n<=0){puts("0");continue;}
        ans=0;
        for(int k=1;k<=l;k++)
        {
            tmp=0;
            for(int s=0;s<(1<<n1);s++)
            {
                int x=0,r=0;
                for(int i=0;i<n1;i++) if(s&(1<<i)) x+=a[i],r++;
                if(r&1) tmp=(tmp-C(m-x-1,n-1,k))%mod;
                else tmp=(tmp+C(m-x-1,n-1,k))%mod;
            }
            ans=(ans+tmp*(mod/w[k])%mod*power(mod/w[k],phi[k]-1))%mod;
        }
        ans=(ans+mod)%mod;
        printf("%lld\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值