BZOJ3309 DZY loves Math

Problem

BZOJ

Solution

本来想写完DZY loves Math系列再统一发题解的,然后我就被第二题劝退了,所以就只能把这个计划暂时搁下来了。

∑ i = 1 n ∑ j = 1 m f ( gcd ⁡ ( a , b ) ) \sum_{i=1}^n\sum_{j=1}^m f(\gcd(a,b)) i=1nj=1mf(gcd(a,b))

∑ d = 1 n f ( d ) ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = d ] \sum_{d=1}^n f(d) \sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=d] d=1nf(d)i=1nj=1m[gcd(i,j)=d]

∑ d = 1 n f ( d ) ∑ i = 1 n / d μ ( i ) n i d m i d \sum_{d=1}^n f(d)\sum_{i=1}^{n/d}\mu(i)\frac n {id} \frac m {id} d=1nf(d)i=1n/dμ(i)idnidm

∑ i d = 1 n n i d m i d ∑ i ∣ i d f ( i d i ) μ ( i ) \sum_{id=1}^n \frac n {id}\frac m {id} \sum_{i|id} f(\frac {id} i) \mu(i) id=1nidnidmiidf(iid)μ(i)

g ( n ) = ∑ d ∣ n f ( n i ) μ ( i ) g(n)=\sum_{d|n} f(\frac n i)\mu(i) g(n)=dnf(in)μ(i),打表找规律,发现若 n = ∏ i = 1 k p i a i n=\prod_{i=1}^k p_i^{a_i} n=i=1kpiai,当 a i a_i ai均相等时 g ( n ) = ( − 1 ) k + 1 g(n)=(-1)^{k+1} g(n)=(1)k+1,否则 g ( n ) = 0 g(n)=0 g(n)=0

这个证明也不难,考虑莫比乌斯函数只有在质数的指数小于等于1时有值。

  • 若存在 a i &lt; a j a_i&lt;a_j ai<aj,那么我们 f ( d ) f(d) f(d)中的 d d d取不取 p i p_i pi都一样,而莫比乌斯函数的取值却恰好相反,所以抵消了,恒等于0
  • 若不存在,如果 μ \mu μ中的值取了 k k k个质数, f ( d ) = a − 1 f(d)=a-1 f(d)=a1,其它 2 k − 1 2^k-1 2k1中情况, f ( d ) = a f(d)=a f(d)=a。由于奇偶性对称,所以最后的值应该是 ( − 1 ) k ( a − 1 ) + ( − 1 ) k + 1 a = ( − 1 ) k + 1 (-1)^k(a-1)+(-1)^{k+1}a=(-1)^{k+1} (1)k(a1)+(1)k+1a=(1)k+1

关于实现上的trick:不需要记录mn和mx,只需要判定mn和除去mn的贡献之后是否一样即可。

Code

#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=10000010;
template <typename Tp> inline int getmin(Tp &x,Tp y){return y<x?x=y,1:0;}
template <typename Tp> inline int getmax(Tp &x,Tp y){return y>x?x=y,1:0;}
template <typename Tp> inline void read(Tp &x)
{
    x=0;int f=0;char ch=getchar();
    while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
    if(ch=='-') f=1,ch=getchar();
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    if(f) x=-x;
}
int z,n,m,tot,pri[maxn],d[maxn],mn[maxn],val[maxn];
ll ans;
void init()
{
	for(int i=2;i<=10000000;i++)
	{
		if(!d[i]) pri[++tot]=i,d[i]=mn[i]=1,val[i]=1;
		for(int j=1;j<=tot&&i*pri[j]<=10000000;j++)
		{
			int r=i*pri[j];
			if(i%pri[j]==0)
			{
				d[r]=d[i];mn[r]=mn[i]+1;
				if(d[i]==1) val[r]=1;
				else val[r]=(mn[r]==mn[d[r]]?-val[d[r]]:0);
				break;
			}
			d[r]=i;mn[r]=1;
			val[r]=(mn[i]==1?-val[i]:0);
		}
	}
	for(int i=2;i<=10000000;i++) val[i]+=val[i-1];
}
int main()
{
	init();
	read(z);
	while(z--)
	{
		read(n);read(m);ans=0ll;
		if(n>m) swap(n,m);
		for(int i=1,j;i<=n;i=j+1)
		{
			j=min(n/(n/i),m/(m/i));
			ans+=(ll)(n/i)*(m/i)*(val[j]-val[i-1]);
		}
		printf("%lld\n",ans);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值