首先介绍几条优化原则:
- 尽量避免where中包含子查询;
- where条件中,过滤量最大的条件放在where子句最后;
- 采用绑定变量有助于提高效率;
- 在索引列上使用计算、改变索引列的类型、在索引列上使用!=将放弃索引;
- 避免在索引列上使用is null和is not null;
- 使用索引的第一个列;
- 用union-all替代union;
- like ‘text%’使用索引,但like ‘%text’不使用索引;
- select a, b from tab 比 select * from tab 效率高。
一、“like '%%'”的优化,建议使用instr(?,?)效率高
单表有超大数量级的数
1、oracle和mysql中
如果有索引的情况下,使用like 'aa%'或者like '%aa'效率较高,因为如果是like "%aa%"那么会导致全表扫描!效率非常低!
如果没有索引,那么最好使用instr(stpm,字符串)函数解决问题
举例:
select * from xslsb where spmc like '%毛线%'; //效率很低
select * from xslsb where (instr(spmc,'毛线'))>0; //效率高
2、sql server中
2005以后,采用contains(spmc,'毛线')函数
二、批量插入
如果一条一条插入,那么效率很低
insert into t_user values(?,?,?);
所以采用批量
insert into t_user select * from t_user2;
其他延伸:t_user 表字段要和t_user2字段的结构和名称一致
三、exists和in的效率
exists相对较高,适用于外表小,内表大的情况
select * from 外表小 where exists( select * from 内表大);
in相对较低,适用于外表大,内表小的情况
select * from 外表大 where 字段 in (select 字段 from 内表小);
如果内表和外表差不多,那么exists和in效率差不多!
四、对查询的条件添加索引
1、mysql
create index t_user_index on t_user(username);
drop index t_user_index on t_user; --删除索引
2、oracle
create index t_user_index on t_user(username);
drop index t_user_index; ---删除索引
五、使用union all 而少用union
union all执行的内部机制少
union 在表联合查询后还会进行筛选操作,费时!
六、连续值查询
1、使用between and
原因:不会全表查询
2、不使用in()
原因:导致全表查询,效率低
七、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t_user where substring(name,1,3) = 'abc' -–name以abc开头的id
改为:select id from t where name like 'abc%'
八、尽量避免大事务操作,提高系统并发能力。
九、跨oracle用户访问
select count(*) from (select hykh from user.tablewhere scsj>=to_date('2015-11-01','yyyy-MM-dd') group by hykh);
user代表用户
table代表user中的table表
十、创建临时表可以提高查询速度
如果在1000万的数据中查询结果,那么以下第二种查询效率会高很多倍!
(1)select * from t_user where name='suns';
(2)select * from t_user tu,user us where tu.id=us.id and us.name='suns';
十一、使用mysql 的扩展语句replace into 与insert into 的注意
1、insert into 效率低,但是通用性能很好
2、replace into 效率高 ,但是如果表中有自增长的主键,那么一定要谨慎选择使用,因为如果主键的增长id一旦达到最大后就无法继续增长了!