【NOIP模拟】方格稿纸

题面

小 y 终于在小学学会了一些字、词、句子, 会写一点作文了。某一天,小 y 买 了一张方格稿纸来写作文, 稿纸是 n 行 m 列的,形状如下所示(图中 n=m=5):

某天小 y 的邻居小 x 来小 y 家玩, 无聊地用黑墨水笔把小 y 新买的方格稿纸 涂黑了很多格子。每个格子不是完全黑色就是完全白色,如下图所示。

小 y 不能责怪小 x。作文写不成了,他也觉得很无聊,就开始数里面有多少 “魔 幻方阵”。如果稿纸中一个 k×k 的正方形区域满足以下两个条件,那么它就是魔幻 方阵:

(1) 黑白格子的数量差不能超过 1; (2) k 不能小于 2。 上图染色后的方格稿纸共有 9 个魔幻方阵(6 个 2×2 的魔幻方阵, 3 个 3×3 的魔幻方阵)。

现在,请你帮助小 y 编程计算被染色的稿纸里面有多少个魔幻方阵。

对于 50%的数据满足: 1≤n≤10, 1≤m≤10; 对于 75%的数据满足: 1≤n≤180, 1≤m≤180; 对于 100%的数据满足: 1≤n≤300, 1≤m≤300。

分析

n3,二维前缀和随便乱搞。

代码

#include<bits/stdc++.h>
using namespace std;
#define N 303
int w,b,n,m,ans;
int a[N][N],white[N][N],black[N][N];
inline void read(int &x)
{
    x=0;char ch=getchar();
    while(ch<'0'||ch>'9')ch=getchar();
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
}
int main()
{
    read(n),read(m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            read(a[i][j]);
            white[i][j]=white[i-1][j]+white[i][j-1]-white[i-1][j-1]+(a[i][j]?0:1);
            black[i][j]=black[i-1][j]+black[i][j-1]-black[i-1][j-1]+(a[i][j]?1:0);
        }        
    for(int k=2;k<=min(n,m);k++)
        for(int i=k;i<=n;i++)
            for(int j=k;j<=m;j++)
            {
                w=white[i][j]-white[i-k][j]-white[i][j-k]+white[i-k][j-k];
                b=black[i][j]-black[i-k][j]-black[i][j-k]+black[i-k][j-k];
                if(abs(w-b)<=1)ans++;
            }    
    printf("%d\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/NSD-email0820/p/9814324.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值