【51NOD1981】如何愉快地和STL玩耍?

题面

驴蛋蛋在愉快地与STL玩耍

突然间小A跳了出来对驴蛋蛋说,看你与STL玩的很开心啊,那我给你一个大小为N的vector,这个vector上每个位置上是一个set<int>,

每次我会在闭区间 [L,R] 中的每个set<int>里插入一个数c,或者询问 [L,R] 区间所有set里所有数拿下来排序之后的严格第K小,现在你还开心吗,红红火火恍恍惚惚韩寒会画红槐花!!!!

小A走了,留下驴蛋蛋一个人外加一个长度为 N 的vector<set<int> >在风中凌乱,你能帮驴蛋蛋解除凌乱吗?

根据小A的 C++2.33 标准vector可以被视作一个数组,下标从 1 开始,大小不得超过65536

set<int>是一个集合,其中的数不得超过 10000 并且会被自动去重

小A最多会进行Q 次(不超过 65536)完全符合 C++2.33标准的操作,但如果出现询问时[L,R]区间里不足K个数的情况,你只需要对小A回答−1就好了

分析

传说中的毒瘤题?线段树+永久延迟标记+二分+bitset

空间不够,被逼写了一次非结构体线段树,这样只用开两倍了。

bitset以前写到过一次,stl黑科技。bitset的第i位为1表示i这个数在这个结点的集合里。

二分之前先查询一次,把查询区间的数都染成1。

为助于理解,把pre数组打印出来了,二分的原理应该也很明显了吧?

10000000000
11000000000
11100000000
11110000000
11111000000
11111100000
11111110000
11111111000
11111111100
11111111110
11111111111

代码

#include<bits/stdc++.h>
using namespace std;
#define N 10010
#define M 65540
#define lc (p<<1)
#define rc (p<<1|1)
struct email
{
    bitset<N>lazy,bit;
}t[M*2];
int n,q,k,ql,qr,op,cnt;
bitset<N>ans[M],pre[N],tmp;

inline void update(int p,int l,int r)
{
    t[p].bit[k]=1;
    if(ql<=l&&qr>=r)
    {
        t[p].lazy[k]=1;
        return ;
    }
    int mid=l+r>>1;
    if(ql<=mid)update(lc,l,mid);
    if(qr>mid) update(rc,mid+1,r);
}

inline void query(int p,int l,int r)
{
    if(ql<=l&&qr>=r)
    {
        ans[cnt]|=t[p].bit;
        return ;
    }
    ans[cnt]|=t[p].lazy;
    int mid=l+r>>1;
    if(ql<=mid)query(lc,l,mid);
    if(qr>mid) query(rc,mid+1,r);
}

inline int check(int mid)
{
    tmp=ans[cnt]&pre[mid];
    if(tmp.count()>=k)return 1;
    return  0;
}

inline void solve()
{
    if(k==0){puts("-1");return ;}
    cnt++;query(1,1,n);
    if(ans[cnt].count()<k){puts("-1");return ;}
    int l=0,r=N-2,ans,mid;
    while(l<=r)
    {
        mid=l+r>>1;
        if(check(mid))ans=mid,r=mid-1;
        else l=mid+1;
    }
    printf("%d\n",ans);
}

int main()
{
    scanf("%d%d",&n,&q);
    pre[0][0]=1;
    for(int i=1;i<N;i++)
        pre[i]=pre[i-1],pre[i][i]=1;
    while(q--)
    {
        scanf("%d%d%d%d",&op,&ql,&qr,&k);
        if(op==1)update(1,1,n);
        else solve();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/NSD-email0820/p/9817508.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值