1.全排列
1.1.例题:无
1.1.1.全排列的代码思想:
利用递归的方法加上回溯的标记来实现。
//1到n的全排列
int n;
int pd[15],a[15];
void dfs(int cs)
{
//输出满足的排列
if(cs>n){
for(int i=1;i<=n;i++)cout<<a[i]<<" ";
cout<<endl;
return;
}
for(int i=1;i<=n;i++)
{
if(pd[i]==1)continue;
pd[i]=1;
a[cs]=i;
dfs(cs+1);//递归
pd[i]=0;//回溯
}
}
2.全组合
2.1.例题:
题目描述
给定 V 种货币(单位:元),每种货币使用的次数不限。
不同种类的货币,面值可能是相同的。
现在,要你用这 V 种货币凑出 N 元钱,请问共有多少种不同的凑法。
输入格式
第一行包含两个整数 V 和 N。
接下来的若干行,将一共输入 V 个整数,每个整数表示一种货币的面值。
输出格式
输出一个整数,表示所求总方案数。
数据范围
1≤�≤251≤V≤25
1≤�≤1041≤N≤104
答案保证在long long
范围内。
输入样例:
3 10
1 2 5
Copy
输出样例:
10
2.1.1.全组合的代码思想:
元素存在a[i]中,利用a[i]中的元素可以组合成数字m的组合有多少种(元素可以无限使用,但是一种存在的组合无论如何排列都只算一种)
利用顺序排列数组的大小,然后组合时利用升序的组合顺序。就可以不用考虑排序重复元素的问题。
1 1 1 对
1 1 2 对
1 2 1 错
1 1 2 3 对
2.1.1. 在使用到全组合的实现时一昧利用暴力不仅时间复杂度过高而且空间复杂度也会很高。
2.1.2. 第一种思路就是利用递归但是也,要记录在上一次循环中last_max_i,但是时间复杂度也容易高。
2.1.3 第二种也就是最优的方法就是利用线性pd的方法去解决,但是也要去记录i-a[j]中含有比自己的循环第(j)的元素小的都可以直接加到i时的个数,即加到last_max[i][j]中。
2.2代码实现:
#include<iostream>
#include<algorithm>
using namespace std;
int a[30];
long long n,m;
long long k;
//利用“递归”来实现组合的形式。(1)
//1111111111111111111111111111111111111111111111111111111111111
void dfs(int sum,int last)
{
if(sum==m)k++;
if(sum>=m)return;
for(int i=last;i<=n;i++)
{
dfs(sum+a[i],i);
}
}
//11111111111111111111111111111111111111111111111111111111111111
//利用“线性pd”来实现组合的形式(2)
//22222222222222222222222222222222222222222222222222222222222222
long long last_max[10001][30];
long long pd[10001];
void xxpd()
{
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(i-a[j]<0)break;
if(i-a[j]==0){
pd[i]=1;
last_max[i][j]++;
}
else{
for(int k=1;k<=j;k++)
{
last_max[i][j]+=last_max[i-a[j]][k];
}
}
}
}
long long sum=0;
for(int i=1;i<=n;i++)
{
sum+=last_max[m][i];
}
cout<<sum;
}
//222222222222222222222222222222222222222222222222222222222222222222222222222222222
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+1+n);
//dfs(0,1);
//cout<<k;
xxpd();
return 0;
}