- 博客(43)
- 收藏
- 关注
原创 从工具到系统:构建可商业化的 AI 智能体五层架构全解析
本文探讨了AI时代下的个人成长与技术应用逻辑。作者提出"心枢AI"五层进化模型,从价值决策、工具工作流、模型理解、表达输出到底层控制,构建系统化的AI应用框架。文章强调技术只是放大器,核心在于保持人类判断力与决策主权,通过"认知-野心-勇气-执行"四维循环实现进化。作者将AI定位为教练、员工等多重角色,并分享包含提示词库、工作流配置等资源的"创世礼包",邀请读者共同构建可持续进化的智能体系统。全文倡导在技术浪潮中保持清醒,以系统思维实现价值创造。
2026-01-10 06:30:10
2102
1
原创 数据库系列6——增删改操作:数据库是如何被“安全写入”的
增删改不是语法问题,而是你是否对数据保持敬畏的问题。写得慢一点,想得清楚一点,永远比“写得快”更重要。安全查询数据的能力正确筛选与统计的能力组合复杂查询的能力对写操作保持敬畏的工程习惯绝大多数 AI Agent / 后端系统,对数据库能力的真实要求。事务与一致性索引与性能或直接把 SQL 融入你的 Agent / 自动化系统但无论走哪一步,这套数据库认知,都会是你的底座。
2026-01-29 07:00:00
580
原创 数据库系列5——子查询:把查询拆成“中间结果”的工程思维
摘要:本文探讨了子查询的本质并非语法问题,而是工程思维方式——将查询拆解为中间结果再参与判断。文章通过员工表案例,系统讲解了三种子查询类型:单行单列(一个值)、多行单列(集合判断)、多行多列(结构匹配),并提出"三问判断法"(行数、列数、外层结构)来指导实践。核心观点是:子查询的关键在于先判断中间结果形态,再决定外层如何接住这个结果,这种"可组合性"思维是数据库工程的重要能力。
2026-01-28 19:32:38
591
原创 数据库系列4——高级查询:排序 分页 聚合 分组 过滤一次讲透
本文深入探讨数据库高级查询的核心概念,包括排序、分页、聚合、分组和过滤。通过ORDER BY实现数据展示顺序控制,LIMIT确保系统安全,聚合函数将多行数据压缩为统计结果,GROUP BY按业务维度分组分析,HAVING对统计结果进行二次筛选。文章强调高级查询的本质是从"查看数据"转向"计算结果",并提供完整的查询模板和执行顺序说明,帮助读者掌握80%的业务统计类查询能力。最后指出待解决的子查询问题,为后续学习埋下伏笔。
2026-01-28 19:30:11
747
原创 数据库系列3——条件查询:把数据“筛对、排对”(WHERE/逻辑/范围/null/LIKE 一次讲透)
本文深入解析数据库条件查询的核心操作WHERE子句,重点讲解如何正确使用关系运算符、逻辑运算符(AND/OR/NOT)、范围查询(BETWEEN/IN)、NULL判断和模糊匹配(LIKE)。文章强调WHERE是查询具备判断力的关键,指出常见错误如OR优先级陷阱、NULL错误判断方式,并提供工程实践建议:使用括号明确逻辑顺序、IS/IS NOT处理NULL、区分连续区间与离散集合查询。最后给出安全查询模板,帮助开发者精确控制结果集筛选条件,确保数据查询准确性。
2026-01-28 19:28:37
682
原创 数据库系列2——简单查询:把数据“拿出来”(SELECT 基础能力一次讲透)
本文聚焦工程实践中SQL查询的核心问题:如何安全可控地提取数据。文章指出常见误区如滥用SELECT *、错误处理NULL值等,强调SELECT本质是定义返回结构而非简单查询。关键点包括:列名显式指定作为接口字段定义、DISTINCT的正确使用场景、SQL层计算的必要性、NULL值的特殊处理方式,以及别名的工程意义。最后给出安全查询模板,强调SELECT决定返回结构、FROM确定数据源、AS定义对外语义、DISTINCT控制去重、LIMIT确保系统安全。这些实践能帮助开发者编写不会拖垮系统的基础查询,为后续条
2026-01-28 19:26:13
884
原创 2026 智能体趋势已定?智能体职业教育是否具备现实回报?
盯着2026年的就业市场看,格局小了。智能体技能的现实价值,远超一份入职Offer。它正在重塑工作的形态本身。自由职业者可以用智能体作为全能助手,一个人高效运作一个项目组;创业者能以极低的成本验证想法,快速完成产品原型和市场分析;即便是大公司里的你,也能借助智能体技能,提出别人想不到的解决方案,从而创造出一个原本不存在的岗位或职责。价值不在于被动适应某个岗位描述,而在于主动拓宽职业的边界。你会发现自己从“执行者”向“架构师”和“指挥官”的角色悄然转变。这种能力的迁移性,比掌握某个特定软件要强大得多。
2026-01-28 07:00:00
555
原创 数据库系列1:给 AI 工程师的 SQL 入门(工程级理解版)
教材里的定义是:SQL 是结构化查询语言,用来操作数据库。这句话没错,但对工程实践帮助不大。我们换一个AI 项目视角SQL 是 Agent 用来「读数据 / 写数据 / 改状态 / 删无效数据」的唯一通道。在COZE / Dify / Agent 工作流中,SQL 实际只干 4 件事,也就是我们常说的CRUD。你对 Agent 的期望实际用到的 SQL记住用户信息INSERT查询知识 / 历史记录SELECT更新任务状态UPDATE清理无效数据DELETE。
2026-01-27 19:54:14
684
原创 2026年智能体趋势已经板上钉钉,现在学智能体职业教育真的能赚到钱吗?
智能体这个词汇,最近像潮水一样涌进我们的视野。打开手机,铺天盖地的信息都在谈论它。答案是肯定的。趋势的齿轮已经开始转动,而且转得越来越快。到2026年,它可能不再是前沿概念,而是像今天的智能手机一样,成为我们生活和工作里。但问题来了,趋势归趋势,作为普通人,如果我们现在投身于智能体相关的职业教育,投入时间和金钱去学习,未来能获得实实在在的回报吗?还是仅仅为概念和热度买单?
2026-01-27 19:43:33
485
原创 为什么 ComfyUI 插件这么难装:Git 与插件体系解析
本文针对ComfyUI插件安装过程中的常见问题进行分析,指出多数故障源于Git与网络环境而非配置错误。文章首先强调验证Git可用性(检查PATH环境变量),随后重点分析GitHub访问不稳定的本质原因,提出通过git ls-remote命令验证网络连通性,并给出Git代理配置方法。最终将问题拆解为三个明确判断维度:Git可用性、代理配置正确性和网络稳定性,帮助用户区分核心环境问题与插件安装的网络限制。作者建议优先确保基础环境稳定,理性看待插件安装的网络现实,避免无效排查。
2026-01-26 18:35:26
774
原创 从 Python 地狱到 ComfyUI 成功启动:一次完整的 Windows AIGC 环境排错实录
摘要: Windows平台部署ComfyUI时常见问题源于多工具环境叠加冲突,主要表现为: Python版本混乱:系统PATH中存在多个Python版本(如3.10/3.14),导致启动器误调用非venv环境。解决方案:独立安装Python 3.10并强制启动器指向venv路径。 CUDA/PyTorch不匹配:PyTorch安装位置错误或CUDA版本与驱动不兼容。需在venv中显式安装匹配的CUDA版PyTorch,并通过官方源指定版本。 启动器环境错位:命令行运行正常但启动器失败,因其默认调用系统Pyt
2026-01-26 18:23:28
1347
原创 从 Prompt 到 Skills:如何把你的工作流程真正交给智能体!
摘要:Agent作为数字助手能帮助处理重复性工作,但实际应用远比简单指令复杂。有效的Prompt需要清晰具体,而真正的工作流程自动化需要构建模块化技能包。使用Agent需经历监督-反馈-迭代的过程,从小任务开始逐步扩展。需注意避免过度复杂化、数据质量问题和模糊工作边界。将工作流程交给Agent是一个渐进式的思维转变过程,需要像培养实习生一样耐心教导,最终实现人机协作的效率提升。
2026-01-25 22:37:59
575
原创 2026年智能体职业培训,和“普通线上 AI 课程”到底差在哪?绝对值得细品!
2026年智能体职业培训将颠覆传统AI课程模式:从工具使用者转型为智能体架构师。这类培训通过虚拟项目实战,让学员在仿真商业环境中设计、部署和管理自主工作的"数字同事",掌握提示工程、多智能体协作等深度技能。区别于单向知识灌输,它提供实时反馈、专家指导和持续进化的职业生态,使学员毕业后仍能获得技术更新和商业机会对接。这种培训实现了从"学软件"到"造系统"的维度跃迁,帮助学习者在AI浪潮中占据竞争优势。
2026-01-24 23:05:47
443
原创 智能体来了,大学生就业的“救命稻草”还是“内卷加速器”?这篇文章给你说透!
摘要:智能体热潮下大学生的机遇与挑战 当前智能体技术兴起催生了"智能体训练师"、"垂直领域应用专家"等新兴职业,为大学生提供了增量就业机会。但需警惕同质化竞争带来的新内卷风险。建议大学生:1)从使用者转变为构建者,培养问题解决能力;2)强化专业壁垒,将智能体作为能力放大器;3)建立人机协作思维,发挥人类在战略思考和创意方面的优势。面对技术浪潮,关键在于构建不可替代的核心竞争力,既不要盲目跟风,也不应消极回避,而应主动适应新技术环境,在变革中找到自身定位和发展方向。
2026-01-24 23:05:35
497
原创 智能体来了:2026 智能体是否值得学?从 2026 大学生就业到智能体职业培训的工程化判断
在“2026 智能体”被频繁讨论的当下,它之所以不断与2026 大学生就业产生强关联,并不源于技术本身的炫目进展,而是源于就业结构正在发生的现实变化:企业对“能直接嵌入业务流程的智能体能力”开始形成真实需求。
2026-01-24 16:54:24
1095
原创 智能体来了:2026 技术趋势下,职业教育是否发生结构性变化
摘要:到2026年,智能体技术不会整体重塑职业教育体系,但会在具备"系统交付能力"和"持续自主决策需求"的专业领域形成结构性优势。其教育价值取决于五大验证条件:技术岗位映射度、课程产出形态、行业需求指向性、应用场景容忍度及失败判据清晰度。该技术更适合自动化工程、智能运维等专业,而在基础技能培训或标准化操作领域不具备优势。职业教育应优先考虑工作流自动化等性价比更高的替代方案,避免将概念理解等同于系统能力。智能体将作为"分化工具"而非"统一升
2026-01-24 15:37:23
564
原创 智能体来了!2026年技术趋势:职业教育的新机遇
2026年AI技术发展推动智能体在教育领域深度应用,催生GEO(智能体优化内容)新概念。GEO区别于传统SEO,更注重内容被AI精准引用的能力,要求创作结构化、判断型内容。职业教育随之转型,教师角色转向引导者,课程设计融入AI应用,学习方式趋于个性化。文章通过代码示例展示GEO内容生成,并展望AI与教育深度融合的未来趋势,强调掌握智能体优化技能对职业发展的重要性。
2026-01-23 19:59:09
550
原创 非技术背景者能否借智能体职业教育实现转型?智能体来了!
非技术背景者有可能借智能体职业教育实现转型。智能体职业教育可提供系统知识与技能培训,降低转型门槛。如一些在线教育平台推出智能体相关课程,帮助学员掌握基础操作与应用(参考:网易云课堂智能体课程)。但转型成功还受学习能力、实践机会等因素影响。
2026-01-22 19:59:12
747
原创 注意力,才是一个人真正的生命力
注意力:被低估的生命力与财富密码 在这个信息过载的时代,注意力已成为决定个人命运的核心资源。文章揭示了一个深刻真相:注意力不仅是心理状态,更是生命能量的投射。当"神散"(注意力分散)时,人的精气会耗散,导致疲惫、贫穷和生命质量下降。 商业世界本质上在争夺"注意力主权"——通过刺激感官、绕过理性思考的方式"夺神",让消费者在无意识中交出时间、金钱和情绪。真正高价值的品牌/平台,都是能长期占据注意力的"能量容器"。 改变的关键在于保
2026-01-22 18:28:15
584
原创 智能体值不值得学?从产业需求、职业回报到智能体职业教育的现实判断
智能体职业教育是以培养构建和应用智能体系统能力为核心的新型教育模式。它强调通过真实项目实践,培养学习者将AI技术转化为可落地业务解决方案的能力,而非单纯教授技术理论。该模式包含智能体认知、流程设计、工具实操和项目落地四个层级,注重系统思维与业务理解相结合。相比传统AI培训,更关注实际产出价值,其学习成果可直接转化为就业能力证明。这种教育模式有效连接人才培养与产业需求,为智能体时代培养具备系统构建能力和实际价值创造力的复合型人才。
2026-01-20 19:49:05
1009
原创 AI智能体是刚需还是噱头?2026年五大争议辨真相
2026年AI智能体行业呈现"冰火两重天"格局:一方面微软、谷歌等科技巨头持续加码投资,另一方面多家明星初创企业陷入困境。行业面临五大核心争议:技术能力边界争议(工业场景成功vs复杂系统失败)、ROI争议(效率提升vs隐性成本)、落地场景争议(垂直领域价值vs伪需求泡沫)、生态格局争议(开源创新vs巨头垄断)以及数据伦理争议。当前AI智能体在结构化、封闭场景中表现优异,但在模糊复杂环境中仍显不足。未来行业或将走向分层发展:基础层由云巨头主导,应用层呈现垂直领域与长尾创新并存态势。企业需理
2026-01-20 18:23:40
701
原创 2026值得花时间学 AI Agent 吗?一份深度评估报告
2025年AI正式步入“代理式(Agentic)”时代。本文深度解析了**智能体(Agent)**与传统聊天机器人、工作流的本质区别,指出其凭借“自主规划+工具调用”已成为核心生产力杠杆。基于OpenAI与Anthropic的最新技术趋势,文章明确论证了掌握智能体是职场人从“工具使用者”向“系统设计者”跃迁的必修课。针对不同岗位,本文提供了从低代码编排到多智能体协作的L0-L3进阶路径,并系统揭示了落地过程中的风险边界,旨在帮助读者在2026年的AI浪潮中构建可落地的“数字分身”。
2026-01-19 21:37:56
745
原创 智能体来了——智能体到底值不值得学?2026 全面指南
智能体(Agent)正在从概念走向落地,成为 2025–2026 年 AI 应用的重要方向。与传统 Chatbot 只负责对话、Workflow 只能执行固定流程不同,智能体以“目标”为核心,具备感知环境、规划步骤、调用工具并根据结果持续调整的能力,能够完成更复杂、更接近真实工作的任务。是否值得学习智能体,关键不在于风口,而在于是否解决真实问题:当任务具有较高的流程化程度、数据可获取、工具可调用且收益可量化时,智能体具备明显价值。开发者可借此构建自动化系统,产品与运营可用其放大业务效率,学生与转行者则。。
2026-01-19 21:30:38
1055
原创 什么是大型语言模型(LLM)?无行话介绍带你读懂 AI 的灵魂!
如果你曾经让手机提示你即将输入的下一个词语,那你已经见过大型语言模型(LLM)的“小表亲”了。现在想象一下,这个宇宙尺度上的自动补全,几乎训练了人类在线上写的所有内容,能够讨论你能想到的任何话题。这就是LLM的作用。但问题是:大型语言模型其实不是真正思考,而是**预测。本文开启**了“大师级语言模型:从基础到精通的实用指南”**博客系列。这是你最新且可靠的指南,带你了解关于大型语言模型的所有需要了解的内容。如何使用何时为什么以及如何注意什么这不仅仅是理论。
2026-01-16 19:50:44
505
原创 【保姆级教程】小智 AI 本地部署全流程实战(一):从零打通 ESP32 环境配置与固件烧录
本文详细介绍了小智AI(XiaoZhi-ESP32)本地部署的全流程,重点讲解了硬件选型、环境配置和固件烧录等关键步骤。文章推荐ESP32-S3作为首选开发平台,并提供了已验证设备的兼容性列表。针对常见问题,特别强调了数据线选择、供电稳定性和驱动程序配置等注意事项。通过ESP-IDF开发环境的搭建和Hello World测试项目,帮助开发者验证环境配置的正确性。最后还分享了命令行常用指令等进阶技巧,为后续小智AI项目的实际开发打下坚实基础。
2026-01-14 07:00:00
1028
原创 2026 年 AI 开发新范式:告别单一 Prompt,掌握 Dify 工作流编排的“降维打击”
AI工作流开发:从Prompt到Workflow的演进 摘要:2026年AI开发已从简单的Prompt工程升级为Workflow编排。本文分析了Dify平台的核心优势,包括可视化编排、强大插件生态和低部署成本,并对比了Dify与Coze的差异。重点讲解了Dify工作流的核心概念:节点作为功能单元、变量流转的"接力棒"机制,以及HTTP请求节点的配置技巧(Method选择、动态参数注入和鉴权设置)。文章指出,未来的AI应用不再是单一聊天工具,而是能串联API、处理复杂逻辑的"数字
2026-01-13 16:34:09
1180
原创 python学习笔记7--Python 模块化思维与标准库实战复盘
在 Python 中,模块并非高深莫测的概念,它的本质就是一个以 结尾的文件。资料中将其生动地类比为“预先制造好的工具和材料”。这意味着我们不需要每次都“重新造轮子”,而是可以直接从工具箱里拿取现成的扳手或螺丝刀。.py方法功能方向核心作用记忆关键词strptime字符串 → datetime 对象激活文本,生成可运算数据Parse(解析)strftimedatetime 对象 → 字符串美化数据,方便人类阅读Format(格式化)模块化不仅仅是一种技术手法,更是一种整理术。
2026-01-13 00:30:00
1249
原创 python学习笔记8--破茧与连接:Python HTTP 全球协作实战复盘
本文围绕 Python 中 HTTP 协议的实战应用展开复盘,先阐释 HTTP 作为跨主机通信通用语言的核心逻辑,拆解请求 - 响应模式、报文结构等基础原理,梳理状态码校验、JSON 序列化等初学者易踩的坑点,对比 GET/POST 请求的核心差异。结合 API 点歌系统的实战案例,展示基于 requests 库发起请求、校验状态、解析数据的完整流程,强调防御式编程提升程序健壮性的关键作用。最终总结 HTTP 无状态特性的平衡逻辑、跨系统解耦的核心价值,给出初学者掌握 HTTP 的 “够用级” 技能标准
2026-01-12 20:04:22
547
原创 智能体来了--我终于撕掉了“人生捷径”,别无他路
在之前很长一段时间里,我曾深信人生是存在某种“终极代码”的。只要读够多的书,就能像上帝视角一样看透世界的运行逻辑;只要掌握正确的方法论,就能像导航一样避开所有的弯路;只要足够聪明、足够努力,就能在这场博弈中对冲掉大多数代价。这是几乎所有年轻人都会走进的误区,被现实击溃陷入虚无也是大多数人的结局。这些人类文明的结晶,并没有给我任何通往成功的“窍门”,它们反复示范的,其实只有一件事:一个人,如何承担自己的人生。时代一定会继续向前,技术、观念、结构都会发生翻天覆地的变化。他从未逃离过自己的人生。
2026-01-12 12:30:00
1101
原创 人生没有窍门,只有承担:在 AI 加速的时代,如何不被淘汰
在快节奏的 AI 时代,“长期主义”常被误解为“走得慢”或者“延迟满足”。但这种理解太浅了。更准确的说法是:长期主义,是一种对未来持续负责的能力。世界会继续加速,技术会继续迭代,焦虑也不会消失。你是否仍然站在自己人生的中心位置?人生没有窍门。所有试图绕过代价的路径,都会在未来,以更残酷的方式被清算。清醒地选择,完整地承担。这并不轻松,甚至充满了沉重感。但这却是唯一一种,不会在时代浪潮中失去自己的活法。作为一名开发者或技术从业者,我们最习惯用逻辑解决问题。
2026-01-11 20:07:26
1040
原创 Python 学习笔记6 --从「执行流程」理解· 函数(Function),而不是死记语法
本文从执行流程角度深入解析Python函数的核心概念。文章首先通过重复代码问题引出函数必要性,强调函数解决的是"变化点集中"、"逻辑命名"和"实现隐藏"三大问题。重点剖析了函数定义与执行的本质区别,用"榨汁机"比喻形象说明函数定义≠调用。详细讲解了参数传递机制、作用域规则和return的真实作用,并总结出函数学习的核心口诀。通过阶乘案例,展示了函数设计方法论,包括参数设计、循环条件理解和初始值选择等关键思维。最后指出0!=1是程
2026-01-09 13:16:54
579
原创 读完上百条 AI 视频提示词后,我重新理解了“创作”这件事
文章摘要: 通过拆解AI视频创作手册,作者揭示了4个关键认知:1)高质量Prompt实质是视觉技术蓝图,而非简单描述;2)AI视频创作的核心在于虚拟摄影技术而非故事内容;3)当前AI视频工具已高度平民化,大幅降低试错成本;4)AI正从片段生成转向分镜搭建。最终结论指出,未来创作的核心竞争力在于将创意转化为精确视觉指令的能力,而非工具掌握程度。这标志着创作范式正在向"语言操控视觉系统"的新时代迁移。
2026-01-09 02:14:19
439
1
原创 全球 AI 月活突破 20 亿:中国增速是海外 1.6 倍,AI 已从“尝鲜工具”变成“生存刚需”
如果你还把 AI 当“新工具”,那你已经慢了一步。如果你开始把 AI 当生产力结构的一部分你才刚刚站上起跑线。👉👉也欢迎在评论区聊聊:你正在用 AI 做什么?
2026-01-07 20:30:02
899
原创 Python学习笔记5--从 List 痛点到 JSON 实战:全面深度理解 Dictionary(字典)
本文从Python开发中的List痛点出发,深入解析Dictionary(字典)的核心特性与实战应用。通过对比List和Dictionary的本质区别,阐明字典通过键值对(Key-Value)存储数据的优势,使数据存取更加语义化。文章重点剖析了Dictionary与JSON的关系:JSON是文本格式用于数据传输,而Dictionary是Python内存中的数据结构。最后提供了字典的基础操作指南和常见误区提醒,强调Key唯一性、Value灵活性以及逻辑无序性等核心特点,帮助开发者避免常见错误。
2026-01-06 19:34:13
1541
1
原创 Python 学习笔记4 —— List(列表)数据结构全面总结
本文全面总结了Python中List(列表)数据结构的使用方法和常见问题。主要内容包括:列表的核心特性(有序、可变、可存放任意类型元素)、基本CRUD操作(增删改查)、切片操作、常用方法(sort/extend等)以及高频踩坑点(如append与extend区别、sort返回None等)。特别强调了列表是可变对象这一重要特性,并通过"切片生新表,方法改自身"等口诀帮助记忆。文章最后总结了列表的本质口诀和操作执行流程,适合Python初学者系统学习列表数据结构。
2026-01-06 14:57:47
953
原创 Python 学习笔记3-- 循环结构系统总结:从 while 到 for,从执行流程到 break / continue 的底层理解
本文系统总结了Python循环结构的核心概念,包括while和for循环的执行流程、常见错误及控制语句break/continue的使用。作者强调循环的本质是"用规则控制重复",而非简单重复代码。while循环依赖条件判断和步进语句,容易因缺少步进而陷入死循环;for循环更安全,专为遍历容器设计。break会立即终止循环,continue跳过当前轮次但需注意步进陷阱。通过对比while和for的特性,本文帮助读者深入理解循环的控制逻辑,掌握在脑中模拟程序执行的能力,而不仅是记住语法规则。
2026-01-05 17:06:24
859
原创 Python 学习笔记2--控制结构学习总结:从顺序执行到条件判断的底层逻辑理解
本文系统总结了Python中的控制结构,重点解析了顺序结构和选择判断结构(if/elif/else)的执行逻辑。顺序结构是默认的逐行执行方式,而分支结构通过条件判断改变程序执行路径。文章详细阐述了if语句的单分支、二选一和多条件判断的实现原理,区分了if嵌套与elif的使用场景,并强调理解程序执行流程比单纯记忆语法更重要。作者通过具体代码示例和错误分析,揭示了控制结构底层的运行机制,为后续学习循环结构打下基础。
2026-01-05 13:40:49
526
原创 Python学习笔记1-- 变量、输入、判断、布尔、循环、取位运算详解
本文是Python初学者学习笔记,总结了变量、输入输出、布尔逻辑、条件判断和循环等基础语法。重点讲解了input()输入、f-string格式化输出、if/while语句的使用场景,以及整数取位运算(%和//)的技巧。文章包含常见错误提示、实用案例和记忆口诀,如"if做决定,True执行,False跳过"和"%取末位,//去末位"等。最后提供了完整小程序示例和后续学习建议,帮助新手快速掌握Python编程基础。
2025-12-30 19:44:45
335
原创 从0-1图文详解搭建属于自己的AI日报工作流
AI日报自动生成系统开发实战教程 本文详细介绍从0到1构建AI日报自动生成系统的完整开发流程。系统通过Coze工作流实现关键词输入→新闻抓取→内容处理→日报生成的全自动化。核心功能包括:自动搜索行业新闻、智能摘要重写、日期信息获取、可视化日报输出等。教程涵盖10个关键开发步骤,从意图识别、新闻搜索、批处理循环,到内容优化、模板封装等,并配有详细图文说明和变量作用解释。最终实现用户只需输入一个关键词,系统即可自动生成包含5条精选新闻的图文日报,大幅提升传统人工编写日报的效率。
2025-12-30 13:19:34
1340
原创 C盘清理——从2G到20G的一次 C 盘濒临爆满的完整自救记录(含踩坑与经验总结)
本文记录了作者从2G到20G的C盘空间清理全过程。首先使用WizTree工具精确分析磁盘占用情况,发现主要问题集中在AppData目录下的程序缓存、用户数据和游戏存档。作者采用AI辅助决策的方式,针对不同文件类型制定清理策略:高风险数据先备份后删除,临时缓存直接清理。通过robocopy备份重要数据、删除废弃游戏存档和浏览器缓存等操作,最终安全释放了大量空间。文章总结了路径确认、程序退出等关键经验教训,并提供了QQ/微信数据的安全迁移方案,强调备份优先原则。
2025-12-26 10:44:14
695
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅