#include<stdio.h>
#include<stdlib.h>
#include<string.h>
//#define N 8//带权值的叶子节点数或者是需要编码的字符数
//#define M 2*N-1//n个叶子节点构造的哈夫曼树有2n-1个结点
#define MAX 10000
typedef char TElemType;
//静态三叉链表存储结构
typedef struct
{
//TElemType data;
unsigned int weight;//权值只能是正数
int parent;
int lchild;
int rchild;
} HTNode; //, *HuffmanTree;
typedef HTNode HuffmanTree[100];//0号单元不使用,应该是M+1
typedef char * HuffmanCode[100];//存储每个字符的哈夫曼编码表,是一个字符指针数组,每个数组元素是指向字符指针的指针,应该是N+1
//在HT[1...k]里选择parent为0的且权值最小的2结点,其序号分别为s1,s2,parent不为0说明该结点已经参与构造了,故不许再考虑
void select(HuffmanTree HT, int k, int &s1, int &s2)
{
//假设s1对应的权值总是<=s2对应的权值
unsigned int tmp = MAX, tmpi = 0;
for(int i = 1; i <= k; i++)
{
if(!HT[i].parent) //parent必须为0
{
if(tmp > HT[i].weight)
{
tmp = HT[i].weight;//tmp最后为最小的weight
tmpi = i;
}
}
}
s1 = tmpi;
tmp = MAX;
tmpi = 0;
for(int i = 1; i <= k; i++)
{
if((!HT[i].parent) && i!=s1) //parent为0,且s2不等于s1
{
if(tmp > HT[i].weight)
{
tmp = HT[i].weight;
tmpi = i;
}
}
}
s2 = tmpi;
}
//构造哈夫曼树
void createHuffmanTree(HuffmanTree &HT, int *w, int n)
{
int i;
int M=2*n-1;
if(n <= 1)
return;
//对树赋初值
for(i = 1; i <= n; i++) //HT前n个分量存储叶子节点,他们均带有权值
{
HT[i].weight = w[i];
HT[i].lchild = 0;
HT[i].parent = 0;
HT[i].rchild = 0;
}
for(; i <=M; i++) //HT后m-n个分量存储中间结点,最后一个分量显然是整棵树的根节点
{
HT[i].weight = 0;
HT[i].lchild = 0;
HT[i].parent = 0;
HT[i].rchild = 0;
}
//开始构建哈夫曼树,即创建HT的后m-n个结点的过程,直至创建出根节点。用哈夫曼算法
for(i = n+1; i <= M; i++)
{
int s1, s2;
select(HT, i-1, s1, s2);//在HT[1...i-1]里选择parent为0的且权值最小的2结点,其序号分别为s1,s2,parent不为0说明该结点已经参与构造了,故不许再考虑
HT[s1].parent = i;
HT[s2].parent = i;
HT[i].lchild = s1;
HT[i].rchild = s2;
HT[i].weight = HT[s1].weight + HT[s2].weight;
}
}
//为每个字符求解哈夫曼编码,从叶子到根逆向求解每个字符的哈夫曼编码
void encodingHuffmanCode(HuffmanTree HT, HuffmanCode &HC,int N)
{
//char *tmp = (char *)malloc(n * sizeof(char));//将每一个字符对应的编码放在临时工作空间tmp里,每个字符的编码长度不会超过n///
char tmp[N];
tmp[N-1] = '\0';//编码的结束符
int start, c, f;
for(int i = 1; i <= N; i++) //对于第i个待编码字符即第i个带权值的叶子节点
{
start = N-1;//编码生成以后,start将指向编码的起始位置
c = i;
f = HT[i].parent;
while(f) //f!=0,即f不是根节点的父节点
{
if(HT[f].lchild == c)
{
tmp[--start] = '0';
}
else //HT[f].rchild == c,注意:由于哈夫曼树中只存在叶子节点和度为2的节点,所以除开叶子节点,节点一定有左右2个分支
{
tmp[--start] = '1';
}
c = f;
f = HT[f].parent;
}
HC[i] = (char *)malloc((N-start)*sizeof(char));//每次tmp的后n-start个位置有编码存在
strcpy(HC[i], &tmp[start]);//将tmp的后n-start个元素分给H[i]指向的的字符串
}
}
//打印哈夫曼编码表//当编码表生成以后,以后就可以对字符串进行编码了,只要对应编码表进行转换即可
void printHuffmanCoding(HuffmanCode HC, char ch[],int N)
{
//printf("\n");
for(int i = 1; i <= N; i++)
{
printf("%c:%s\n", ch[i], HC[i]);
}
//printf("\n");
}
//解码过程:从哈夫曼树的根节点出发,按字符'0'或'1'确定找其左孩子或右孩子,直至找到叶子节点即可,便求得该字串相应的字符
void decodingHuffmanCode(HuffmanTree HT, char *ch, char testDecodingStr[], int len, char *result,int N)
{
int M=2*N-1;
int p = M;//HT的最后一个节点是根节点,前n个节点是叶子节点
int i = 0;//指示测试串中的第i个字符
//char result[30];//存储解码以后的字符串
int j = 0;//指示结果串中的第j个字符
while(i<len)
{
if(testDecodingStr[i] == '0')
{
p = HT[p].lchild;
}
if(testDecodingStr[i] == '1')
{
p = HT[p].rchild;
}
if(p <= N) //p<=N则表明p为叶子节点,因为在构造哈夫曼树HT时,HT的m个节点中前n个节点为叶子节点
{
result[j] = ch[p];
j++;
p = M;//p重新指向根节点
}
i++;
}
result[j] = '\0';//结果串的结束符
}
int main()
{
int N;
scanf("%d",&N);//输入要输入的字符个数
HuffmanTree HT;
TElemType ch[N+1];//0号单元不使用,存储n个等待编码的字符
int w[N+1];//0号单元不使用,存储n个字符对应的权值
//printf("请输入%d个字符以及该字符对应的权值(如:a,20):\n", N);
for(int i=1; i<=N; i++)
{
scanf("%d",&w[i]);//输入字符出现的频率;
}
getchar();//吃掉换行符
for(int i = 1; i <= N; i++)
{
scanf("%c", &ch[i]);
}//输入字符
createHuffmanTree(HT, w, N); //构建哈夫曼树
HuffmanCode HC;//HC有n个元素,每个元素是一个指向字符串的指针,即每个元素是一个char *的变量
encodingHuffmanCode(HT, HC,N);//为每个字符求解哈夫曼编码
printHuffmanCoding(HC, ch,N);//打印编码
return 0;
}