tflearn自定义损失函数

本文介绍了如何在tflearn中创建自定义损失函数。通过创建一个对象并实现`__call__`方法,参照tflearn源码中的objectives.py,确保传入的y_pred和y_true为float类型。在tflearn的layers.estimator.py.regression模块中,如果loss不是一个字符串且具备`__call__`方法,将直接调用该方法来计算损失。
摘要由CSDN通过智能技术生成

创建一个对象,实现__call__方法

class weighted_cross_entropy(object):
    def __call__(self, y_pred, y_true):
        """
        logits: a Tensor with shape [batch_size, image_width, image_height, channel], score from the unet conv10
        label: a Tensor with shape [batch_size, image_width, image_height], ground truth
        """
        weight = [0.21008659,  0.26289699,  0.28279202,  0.24422441]
        # label = tf.one_hot(tf.cast(y_tru
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值