给你二叉搜索树的根节点 root
,同时给定最小边界low
和最大边界 high
。通过修剪二叉搜索树,使得所有节点的值在[low, high]
中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
Python: 遍历二叉搜索树,如果结点值小于low,则左子树都不符合要求,返回修剪后的右子树,如果结点值大于high,则右子树的节点都不符合要求,返回修剪后的左子树。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root:
return None
if root.val < low:
return self.trimBST(root.right, low, high)
elif root.val > high:
return self.trimBST(root.left, low, high)
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root
给你一个整数数组 nums
,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过
由数组构造树的方法:从数组中根据一定规则选取分割点(根节点),然后对左右数组做类似的操作。在这里,选取分割点自然就是中点,偶数长度则任意取一个。然后左右子树则为有左右数组构建的子树。
Python:递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
if not nums:
return None
return self.build(nums,0,len(nums)-1)
def build(self, nums:List[int], left:int, right:int) -> Optional[TreeNode]:
if right < left:
return None
root_index = left + (right - left) //2
root = TreeNode(val=nums[root_index])
root.left = self.build(nums, left, root_index-1)
root.right = self.build(nums, root_index+1,right)
return root
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node
的新值等于原树中大于或等于 node.val
的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
思路:二叉搜索树的中序遍历(左中右),得到的数组为单调递增 ,逆中序遍历(右中左)得到的数组则为单调递减。要得到累加树,对二叉搜索树进行逆中序遍历,然后依次累加即可。
Python:递归,双指针
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.pre = 0
def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return None
return self.inverInorderTraversal(root)
def inverInorderTraversal(self, root:Optional[TreeNode]) -> Optional[TreeNode]:
if not root:
return None
self.inverInorderTraversal(root.right)
root.val += self.pre
self.pre = root.val
self.inverInorderTraversal(root.left)
return root