洛谷P8647 [蓝桥杯 2017 省 AB] 分巧克力(真题)

题目描述

儿童节那天有 𝐾 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 𝑁 块巧克力,其中第 𝑖 块是 𝐻𝑖×𝑊𝑖​ 的方格组成的长方形。

为了公平起见,小明需要从这 𝑁 块巧克力中切出 𝐾 块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数。

  2. 大小相同。

例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入格式

第一行包含两个整数 𝑁 和 𝐾。(1≤𝑁,𝐾≤105)。

以下 𝑁 行每行包含两个整数 𝐻𝑖 和 𝑊𝑖​。(1≤𝐻𝑖,𝑊𝑖≤105)。

输入保证每位小朋友至少能获得一块 1×1 的巧克力。

输出格式

输出切出的正方形巧克力最大可能的边长。

这道题很快会想到一种解法就是算出1-N大小巧克力的块数,然后找出那个超过k并且离k最近的大小的值就是答案。如果用for循环去遍历的话会发生:tle就是超时,因为题目本身给的范围比较大10的5次方,所以如果优化的话用二分来优化。

至于怎么想到用二分呢?就是你会发现1-N大小的巧克力块数他是递减的,那么既然他单调,二分是最合适不过的了

代码如下:

#include <iostream>
using namespace std;

int n, k, ans = 0;
int a[100010], b[100010];

bool check(int x) {
    int res = 0;
    for (int i = 0; i < n; i++) {
        if (a[i] >= x && b[i] >= x) {
            res += (a[i] / x) * (b[i] / x);
        }
    }
    return res >= k;
}

int main() {
    cin >> n >> k;
    for (int i = 0; i < n; i++) {
        cin >> a[i] >> b[i];
    }
    int l = 1, r = 100000, ans = 0;
    while (l <= r) {
        int mid = (l + r) / 2;
        if (check(mid)) {
            ans = mid; // 更新答案
            l = mid + 1; // 寻找更大的可能性
        } else {
            r = mid - 1;
        }
    }
    cout << ans << endl;
    return 0;
}

总结:在单调数组中查找值时要想到用二分,加油

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值