题目描述
儿童节那天有 𝐾 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 𝑁 块巧克力,其中第 𝑖 块是 𝐻𝑖×𝑊𝑖 的方格组成的长方形。
为了公平起见,小明需要从这 𝑁 块巧克力中切出 𝐾 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数。
-
大小相同。
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 𝑁 和 𝐾。(1≤𝑁,𝐾≤105)。
以下 𝑁 行每行包含两个整数 𝐻𝑖 和 𝑊𝑖。(1≤𝐻𝑖,𝑊𝑖≤105)。
输入保证每位小朋友至少能获得一块 1×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
这道题很快会想到一种解法就是算出1-N大小巧克力的块数,然后找出那个超过k并且离k最近的大小的值就是答案。如果用for循环去遍历的话会发生:tle就是超时,因为题目本身给的范围比较大10的5次方,所以如果优化的话用二分来优化。
至于怎么想到用二分呢?就是你会发现1-N大小的巧克力块数他是递减的,那么既然他单调,二分是最合适不过的了
代码如下:
#include <iostream>
using namespace std;
int n, k, ans = 0;
int a[100010], b[100010];
bool check(int x) {
int res = 0;
for (int i = 0; i < n; i++) {
if (a[i] >= x && b[i] >= x) {
res += (a[i] / x) * (b[i] / x);
}
}
return res >= k;
}
int main() {
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> a[i] >> b[i];
}
int l = 1, r = 100000, ans = 0;
while (l <= r) {
int mid = (l + r) / 2;
if (check(mid)) {
ans = mid; // 更新答案
l = mid + 1; // 寻找更大的可能性
} else {
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}
总结:在单调数组中查找值时要想到用二分,加油