题目描述
有一个 𝑛(𝑛≤10^6) 个结点的二叉树。给出每个结点的两个子结点编号(均不超过 𝑛),建立一棵二叉树(根节点的编号为 1),如果是叶子结点,则输入 0
。
建好这棵二叉树之后,请求出它的深度。二叉树的深度是指从根节点到叶子结点时,最多经过了几层。
输入格式
第一行一个整数 𝑛,表示结点数。
之后 𝑛 行,第 𝑖 行两个整数 𝑙、𝑟,分别表示结点 𝑖 的左右子结点编号。若 𝑙=0 则表示无左子结点,𝑟=0 同理。
输出格式
一个整数,表示最大结点深度。
这道题的递归开始的时候比较难理解,一定要有逆向思维,先看代码吧:
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 1e6 + 10;
int n;
struct node{
int left;
int right;
};
node a[MAXN];
int dfs(int x){
if(x == 0) return 0;
else return max(dfs(a[x].left),dfs(a[x].right)) + 1;
}
int main(){
cin >> n;
for(int i=1;i<=n;i++){
cin >> a[i].left >> a[i].right;
}
cout << dfs(1) << endl;
return 0;
}
以题目的例子来讲:dfs(1)之后max(dfs(2),dfs(7))+ 1,这里dfs(7)返回1了,因为他没有节点都是0,然后2继续搜下去一直到max(dfs(4),dfs(5))+ 1,那这里就返回1了,因为他俩都没节点,一直回去就行,每次大的+1
加油