洛谷B3642 二叉树的遍历(前序、中序、后序)

题目描述

有一个 𝑛(𝑛≤10^6) 个结点的二叉树。给出每个结点的两个子结点编号(均不超过 𝑛),建立一棵二叉树(根节点的编号为 1),如果是叶子结点,则输入 0

建好树这棵二叉树之后,依次求出它的前序、中序、后序列遍历。

输入格式

第一行一个整数 𝑛,表示结点数。

之后 𝑛 行,第 𝑖 行两个整数 𝑙、𝑟,分别表示结点 𝑖 的左右子结点编号。若 𝑙=0 则表示无左子结点,𝑟=0 同理。

输出格式

输出三行,每行 𝑛 个数字,用空格隔开。

第一行是这个二叉树的前序遍历。

第二行是这个二叉树的中序遍历。

第三行是这个二叉树的后序遍历。

树的最基本的三个遍历:前序:根左右、中序:左根右、后序:左右根

代码如下:

#include <bits/stdc++.h>
using namespace std;

const int MAXN = 1e6 + 5;
struct node{
	int left;
	int right;
}a[MAXN];
int n;

void front(int x){
	cout << x << " ";
	if(a[x].left) front(a[x].left);
	if(a[x].right) front(a[x].right); 
	return ;
}
void mid(int x){
	if(a[x].left) mid(a[x].left);
	cout << x << " ";
	if(a[x].right) mid(a[x].right);
	return ;
}
void back(int x){
	if(a[x].left) back(a[x].left);
	if(a[x].right) back(a[x].right);
	cout << x << " ";
	return ;
}
int main()
{
	cin >> n;
	for(int i=1;i<=n;i++){
		cin >> a[i].left >> a[i].right;
	}
	front(1);
	cout << "" << endl;
	mid(1);
	cout << "" << endl;
	back(1);
	return 0;
}

原理就是dfs广搜,如果dfs有疑问的地方可以去看看洛谷P1783 数独(c++lambda函数广搜详解)-CSDN博客

洛谷P1036 选数(dfs的应用)-CSDN博客

LeetCode 18.四数之和(暴力dfs)-CSDN博客

加油

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值