题目描述
有一个仅由数字 0 与 1 组成的 n×n 格迷宫。若你位于一格 0 上,那么你可以移动到相邻 4 格中的某一格 1 上,同样若你位于一格 1 上,那么你可以移动到相邻 4 格中的某一格 0 上。
你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。
输入格式
第一行为两个正整数 𝑛,𝑚。
下面 𝑛 行,每行 𝑛 个字符,字符只可能是 0 或者 1,字符之间没有空格。
接下来 𝑚 行,每行两个用空格分隔的正整数 𝑖,𝑗,对应了迷宫中第 𝑖 行第 𝑗 列的一个格子,询问从这一格开始能移动到多少格。
输出格式
𝑚 行,对于每个询问输出相应答案。
这道题最优解是并查集,把这些01分块每个坐标的块所能达到的最大面积就是该坐标的答案,这里我们讲讲用dfs如何解决这个问题:
首先他的条件是这个格子是0那你只能上下左右移动,并且下一个格子必须是1(反之相反),那么这个地方就是这道题的坑点了,如果没有这个限制,这个题基本就是dfs的模板题目了,那有了这个限制就需要一些小技巧:
我们发现迷宫都是01组成的,在c++程序中你会发现如果a = 1,那么!a = 0,那么可以利用这个点,在每次搜索是都传入上一个点迷宫的"!值",这样一来只用判断这个点是否与他相等即可,代码如下:
#include <bits/stdc++.h>
using namespace std;
int b[1005][1005],arr[100005];
char s[1005][1005];
int n,m;
void dfs(int i,int j,int k,int index){
if(i < 0 || i >= n || j < 0 || j >= n || b[i][j] != -1 || k != s[i][j] - '0') return;
b[i][j] = index;
arr[index] ++;
dfs(i - 1,j,!k,index);
dfs(i + 1,j,!k,index);
dfs(i,j - 1,!k,index);
dfs(i,j + 1,!k,index);
}
int main()
{
cin >> n >> m;
memset(b,-1,sizeof(b));
for(int i=0;i<n;i++){
cin >> s[i];
}
for(int i=0,x,y;i<m;i++){
cin >> x >> y;
x --, y --;
if(b[x][y] == -1) dfs(x,y,s[x][y] - '0',i);
else arr[i] = arr[b[x][y]];
}
for(int i=0;i<m;i++){
cout << arr[i] << endl;
}
return 0;
}
加油