人工智能的利弊

人工智能 (AI) 是指计算机与数据科学的融合领域专注于构建具有人类智能的机器,从而执行先前需由人类完成的任务;例如,学习、推理、解决问题、感知、语言理解等。AI 系统可通过数据来学习,而非依赖程序员的明确指令,从而使这些系统能处理复杂的问题(以及简单但重复的任务),并可随着时间的推移而不断改进。

当今的 AI 技术在各个行业均有一系列的用例;企业会使用 AI 来最大限度减少人为错误、降低居高不下的运营成本、提供实时数据洞察以及改善客户体验,此外还有很多其他应用。因此,它代表了我们在处理计算方面的重大转变,并催生出可改善工作流程并增强日常生活元素的各种系统。

但是,即使 AI 拥有无数优点,但与传统编程方法相比,它也存在明显的缺点。AI 开发和部署可能会引发数据隐私问题、失业和网络安全风险,而为确保 AI 系统按预期正常运行所需的大规模技术工作则更是不在话下。

在本文中,我们将讨论 AI 科技的工作原理,并列出人工智能与传统计算方法相比的优缺点。

 

什么是人工智能,它的工作原理是什么?

AI 基于三个基本组成部分运行:数据、算法和算力。

  • 数据:AI 系统根据数据进行学习和决策,需要大量数据才能进行有效训练,尤其是机器学习 (ML) 模型。数据通常分为三类:训练数据(帮助模型学习)、验证数据(调整模型)和测试数据(评估模型的性能)。为了获得最佳性能,AI 模型应该从不同的数据集(例如文本、图像、音频等)接收数据,这使得系统能够将其学习推广到新的、前所未见的数据。
  • 算法:算法是 AI 系统用来处理数据和做出决策的规则集。AI 算法的类别包括 ML 算法,这些算法无需显式编程即可学习并做出预测和决策。AI 还可以通过深度学习算法来工作,深度学习算法是 ML 的一个子集,它使用多层人工神经网络 (ANN)(故此得名“深度”)来对大数据基础设施中的高级抽象进行建模。强化学习算法使代理能够通过执行函数并根据其正确性接受惩罚和奖励来学习行为,并反复调整模型直至训练完全完成。
  • 算力:AI 算法通常需要大量计算资源来处理如此大量的数据并运行复杂的算法,尤其是在深度学习的情况下。许多组织依靠图形处理单元 (GPU) 等专用硬件来简化这些流程。

AI 系统往往也分为两大类:

  • 人工狭义智能又称狭义 AI 或弱 AI,它可执行图像或语音识别等特定任务。Apple 的 Siri、Amazon 的 Alexa、IBM watsonx 甚至还有 OpenAI 的 ChatGPT 等虚拟助理均属于狭义 AI 系统。
  • 人工通用智能 (AGI) 也称为强 AI,它可执行人类能执行的所有智力任务;此外,它还可理解、学习、适应和利用跨领域的知识。但是,AGI 目前仍只是一个理论概念。

 

传统编程的工作原理是什么?

与 AI 编程不同,传统编程要求程序员编写明确的指令来让计算机在每种可能的情况下均会遵循这些指令;然后,计算机会执行这些指令来解决某一问题或执行特定任务。这是一种确定性方法且类似于食谱,因为计算机会执行分步式指令来实现所需的结果。

传统方法非常适合用于解决潜在结果数量有限且定义明确的问题;但是,当任务变得十分复杂或要求具备类似人类的感知能力时(例如,图像识别、自然语言处理等),则通常无法为每个场景分别编写规则。而这便是 AI 编程比基于规则的编程方法更具明显优势的方面。

 

与传统计算相比,AI 的优缺点是什么?

AI 的现实世界潜力是巨大的。AI 的应用包括诊断疾病、个性化社交媒体订阅源、为天气建模执行复杂的数据分析以及为处理客户支持请求的聊天机器人提供支持。人工智能驱动的机器人甚至可以组装汽车并最大限度地限制野火的延烧。

较之传统编程技术,与所有技术一样,AI 也有其优缺点。除运行方式上的根本差异之外,AI 和传统编程在程序员控制、数据处理、可扩展性和可用性方面也存在巨大差异。

  • 控制和透明度:传统编程为开发人员提供了对软件逻辑和行为的完全控制,允许精确定制和可预测的一致结果。如果程序的运行与预期不符,开发人员可以通过代码库进行回溯,找出并纠正问题。AI 系统(尤其是深度神经网络等复杂模型)可能难以控制和解释。它们通常像“黑匣子”一样工作,其中输入和输出是已知的,但模型用于从输入获得输出的过程尚不清楚。在优先考虑流程和决策可解释性的行业(如医疗保健和金融)中,这种模糊性可能会带来问题。
  • 学习和数据处理: 传统的编程比较死板,它依赖于结构化数据来执行程序,通常很难处理非结构化数据。为了 “教” 程序新信息,程序员必须手动添加新数据或调整流程。传统编码程序在独立迭代方面也很吃力。换句话说,如果没有针对这些情况的明确编程,他们可能无法适应不可预见的情况。由于 AI 系统可以从大量数据中学习因此它们更适合处理图像、视频和自然语言文本等非结构化数据。AI 系统还可以持续从新数据和经验中学习(如机器学习),使其能够随着时间的推移提高性能,这对于在最佳解决方案可能随着时间演变的动态环境中特别有效。
  • 稳定性和可扩展性:传统编程较为稳定。一旦编写并调试完某一程序,它每次便会以完全相同的方式执行操作。但是,基于规则的程序的稳定性则是以牺牲可扩展性来作为代价的。由于传统程序只能通过明确的编程干预才能进行学习,因此它们要求程序员大规模编写代码以便扩充操作。对很多组织来说,可能无法管理此流程,甚至不可能实现此目标。AI 程序可提供比传统程序更高的可扩展性,但其稳定性却较差。基于 AI 的程序的自动化和持续学习功能有助于开发人员快速且相对轻松地扩展流程,而这正是 AI 的关键优势之一。然而,AI 系统的即兴创作本质却意味着程序可能并不总能提供一致且适当的响应。
  • 效率和可用性:基于规则的计算机程序可提供 24/7 全天候的可用性,但有时必须有人工对其进行全天候辅助操作。

AI 技术可以在没有人工干预的情况下全天候运行,因此业务运营可以持续进行。人工智能的另一个好处是 AI 系统可以自动执行枯燥或重复的工作(如数据输入),从而释放员工的带宽用于更高价值的工作任务并降低公司的工资成本。不过,值得一提的是,自动化会对劳动力产生重大的失业影响。例如,一些公司已经过渡到使用数字助理对员工报告进行分类,而不是将此类任务委托给人力资源部门。将 AI 整合到运营中提高生产力之后,组织需要找到方法将其现有员工队伍整合到生产力提升后的工作流程中。

 

利用 IBM Watson 最大限度发挥人工智能的优势

Omdia 预计到 2028 年,全球 AI 市场价值将达到 2,000 亿美元。¹这意味着,随着企业 IT 系统的复杂性增加,企业对 AI 技术的依赖亦将增加。但借助 IBM watsonx AI 和数据平台,组织可以在其工具箱中储备扩展 AI 的强大工具。

借助 IBM watsonx,团队能够管理数据源、加速负责任的 AI 工作流程并在整个企业中轻松部署和嵌入 AI,所有这些在一个位置完成。watsonx 提供一系列高级功能,包括全面的工作负载管理和实时数据监控,旨在帮助您利用整个企业的可信数据扩展和加速人工智能驱动的 IT 基础架构。

尽管存在一些复杂性,但 AI 的使用为企业提供了一个机会,可以通过能够处理这种复杂性的先进技术来应对日益复杂和不断变动的世界。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值