Hadoop
Hadoop的组成成分
Hadoop Common:Hadoop模块的通用模块
Hadoop Distributed File System:分布式文件系统
Hadoop Yarn:作业调度和资源管理框架
Hadoop MapReduce:基于Yarn的大型数据集,并行计算处理框架
Hadoop Ozone:Hadoop的对象存储机制
Hadoop Submarine:Hadoop的机器学习引擎
Hadoop的生态图如下
Ambari
用于供应,管理和监控Apache Hadoop集群的基于Web的工具。
Hbase
是一个可扩展的分布式数据库,支持大型表的结构化数据存储。是一个适合于非结构化数据存储的数据库,是面向列存储的。
Hive
是运行在hadoop的数据仓库工具,可以将结构化的数据文件映射成表,并以类sql的语言对数据进行查询和管理等操作。
Pig
用于并行计算的高级数据流语言和执行框架,它简化了hadoop进行数据分析的要求。提供了一个高层次的、面向领域的抽象语言:Pig Latin。
Spark
Hadoop数据的快速和通用计算引擎。 Spark提供了一个简单而富有表现力的编程模型,支持广泛的应用程序,包括ETL,机器学习,流处理和图计算。
ZooKeeper
一个面向分布式应用程序的高性能协调服务,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
Oozie(工作流调度器)
一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。
Sqoop(数据ETL/同步工具)
Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。
Flume(日志收集工具)
Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。
Kafka(分布式消息队列)
Kafka是Lin