衡量两个概率分布之间的差异性的指标

衡量两个概率分布之间的差异性的指标

总结一下衡量两个概率分布之间的差异性的指标,这里只是简单涉及到了KL散度、JS散度、交叉熵和Wasserstein距离

KL散度(Kullback–Leibler divergence)

KL散度又称为相对熵,信息散度,信息增益。
定义:KL散度是是两个概率分布 ? 和 ? 之间差别的非对称性的度量,KL散度是用来度量使用基于 ? 的编码来编码来自 ? 的样本平均所需的额外的位元数。 典型情况下,? 表示数据的真实分布,? 表示数据的理论分布,模型分布,或 ? 的近似分布。
定义式:
KL散度
因为对数函数是凸函数,所以KL散度的值为非负数。

注意
在这里插入图片描述

JS散度(Jensen-Shannon divergence)

定义:JS散度度量两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是 0 到 1 之间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值