按着官网的教程写了一遍,注意一下python版本的语法问题,很容易就跑通了,如果MNIST数据集没法直接通过input_data下载,可以现在官网上下好,然后放到read_data_sets里设置的目录下,就可以了,不需要解压。
import tensorflow as tf
import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
x = tf.placeholder("float", [None, 784])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])+0.1)
y = tf.nn.softmax(tf.matmul(x, w)+b)
y_ = tf.placeholder("float", [None, 10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
cross_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(cross_prediction, "float"))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))