图像识别-纯数字识别

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Away_D/article/details/76603669

验证码识别的原理和过程


第一步:    二值化

所谓二值化就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只剩下需要识别的文字,让图片变成2进制点阵。

20130605195023_13222.png

第二步: 文字分割

为了能识别出字符,需要对要识别的文字图图片进行分割,把每个字符作为单独的一个图片看待。

20130605200952_55267.png

第三步:标准化

对于部分特殊的验证码,需要对分割后的图片进行标准化处理,也就是说尽量把每个相同的字符都变成一样的格式,减少随机的程度

最简单的比如旋转还原,复杂点的比如扭曲还原等等

第四步:识别

这一步可以用很多种方法,最简单的就是模板对比,对每个出现过的字符进行处理后把点阵变成字符串,标明是什么字符后,通过字符串对比来判断相似度。

在文章的后半部分会详细解释每步的各种算法

20130605220655_80781.png



二值化实现方法有

1.1图像灰度化-中值滤波等,同时可以实现背景的去除

1.2图像灰度化-根据灰度值

1.3根据图像色系范围进行二值化处理

图像二值化的意思就是将图像的有效点给分离出来,然后将图片用0和1两个值进行表 示,因为我们没必要知道他们的具体色值,我们的目的就是要知道他们的具体形状,他们 的特征

譬如说淘宝的验证码,和盛大的验 证码, 他们的有效点无非就是U3FM和YPZ7等字符所占据的空间,我们不用管他们是黑色还是红色 ,我们将所有他们所占据的位置都给置为1,其他位置都给置为0

然后我将1的位置用黑色给画出来,0的位置用白色给画出来,就是和

1.2图像灰度化-根据灰度值

这种方式主要适用于对图片进行灰度化(转黑白)处理以后,图片的有效点和背景能 够通过他们的亮度很完美的给分离开的情况,譬如说17GAME的验证码经过灰度化处 理以后是,他的有效点的亮度为0,而背景都有一定的亮度,因此我们之类就可以采取根据亮度 值0-0的限度进行分离,凡是亮度为0的位置,我们都置为1,否则多置为0,这样验证码就 变为了 ,这样图片的二值化就处理成功了,其实17GAME的验证码我们也可以根据色值进行直接的 二值化,因为他的有效点的颜色为#00000,我们直接根据这个就可以直接二值化;

1.3根据图像色系范围进行二值化处理

譬如说有些图片他是全部采用了红色系,然后中间使用了渐变,这样我们可以通过获 取他们的色系范围,即R-G-B各自的取值范围,然后根据这个范围进行直接二值化,此方 法跟灰度化处理大同小异

1.1图像灰度化-中值滤波等,同时可以实现背景的去除

这个步骤为走向二值化的中间步骤,譬如说遇到稍微变态的图片,譬如说新浪博客 ,他含有 背景的杂色,我们就需要先对其进行灰度化处理,然后再根据 中值滤波算法对其进行二值化处理,将背景和前景分离开来,得到

基本经过这几种方式,我们就成功的对图片进行了二值化处理,得到了图片的有效位 置信息,接下来我们还要对其进行去噪,干扰线之类的



matlab:

读入的图像是rgb图像,要先转换成灰度图,阈值的选取有很多种方法,可以用灰度直方图,取谷点;

1、若想快速转变成二值图像则:

i=imread('tuxiang.jpg');

i1=rgb2gray(i);%i1灰度图像

i2=im2bw(i1);% i2是二值图像,不需要求阈值

2、如果你要找直方图谷点,可以imhist(i1)画出灰度直方图,然后观察出谷底,若想编程求谷点的我就不给你编了,不太难;

3、或者你可以自己设经验值

Imax=max(max(i1));

Imin=min(min(i1));

T=round(Imax-(Imax-Imin)/2);%我随便取的,但基本较为好用

i2=(i1)>=T;%i2是二值图像

imshow(i2)



展开阅读全文

没有更多推荐了,返回首页