一、灰度线性变换
图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示
g(x)=αf(x)+β
(1)图像灰度上移变换:DB=DA + 50
(2)图像对比度增强变换:DB=DA * 1.5
(3)图像对比度减弱变换:DB=DA * 0.8
(4)图像灰度反色变换:DB=255 - DA
注意:由于图像的灰度值位于 0 至 255 区间之内,所以需要对灰度值进行溢出判断
有以下几种情况:
<1>当 α=1,b=0 时,保持原始图像
<2>当 α=1,b!=0 时,图像所有的灰度值上移或下移-----------(提升图像的亮度)
<3>当 α=-1,b=255 时,原始图像的灰度值反转
<4>当 α>1 时,输出图像的对比度增强
<5>当 0<α<1 时,输出图像的对比度减小
<6>当 α<0 时,原始图像暗区域变亮,亮区域变暗,图像求补
下面看具体的代码演示:
示例1:图像灰度上移变换
图像的所有灰度值上移 50,图像变得更白了。
注意:纯黑色对应的灰度值为 0,纯白色对应的灰度值为 255
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread("lena.png")
grayImg=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#获取图像的高和宽
grayImg_height=grayImg.shape[0]
grayImg_width=grayImg.shape[1]
#创建新图像
newImg_move=np.zeros((grayImg_height,grayImg_width),np.uint8)#上移
#DB=DA+50 上移
for i in range(grayImg_height):
for j in range(grayImg_width):
if(int(grayImg[i,j]+50)>255):# 溢出判断
gray=255
else:
gray=int(grayImg[i,j]+50)
newImg_move[i,j]=np.uint8(gray)
plt.rcParams['font.sans-serif']=['SimHei']#解决中文乱码问题
#原始图像
img0=plt.subplot(1,2,1)
img0.set_title("原始图像")
plt.imshow(grayImg,cmap="gray")
plt.xticks([])
plt.yticks([])
# newImg_move 上移
img1=plt.subplot(1,2,2)
img1.set_title("灰色上移变换")
plt.imshow(newImg_move,cmap="gray")
plt.xticks([])
plt.yticks([])
plt.show()
cv2.waitKey(0)
运行结果:
示例2:图像对比度增强变换
import cv2
import numpy as np
from matplotlib import pyplot as plt
img=cv2.imread("lena.png")
grayImg=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#获取图像的高和宽
grayImg_height=grayImg.shape[0]
grayImg_width=grayImg.shape[1]
#创建新图像
newImg_increase=np.zeros((grayImg_height,grayImg_width),np.uint8)#对比度增强
# DB=DA*1.5 对比度增强
for i in range(grayImg_height):
for j in