图像处理 | 灰度线性变换与非线性变化

本文介绍了图像处理中的灰度线性变换和非线性变换,包括灰度上移、对比度增强、减弱及反色等操作,并通过Python和OpenCV实现。此外,还探讨了Gamma和对数变换在调整图像对比度和细节上的应用。
摘要由CSDN通过智能技术生成

一、灰度线性变换

图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示

g(x)=αf(x)+β

(1)图像灰度上移变换:DB=DA + 50
(2)图像对比度增强变换:DB=DA * 1.5
(3)图像对比度减弱变换:DB=DA * 0.8
(4)图像灰度反色变换:DB=255 - DA

注意:由于图像的灰度值位于 0 至 255 区间之内,所以需要对灰度值进行溢出判断

有以下几种情况:
<1>当 α=1,b=0 时,保持原始图像
<2>当 α=1,b!=0 时,图像所有的灰度值上移或下移-----------(提升图像的亮度)
<3>当 α=-1,b=255 时,原始图像的灰度值反转
<4>当 α>1 时,输出图像的对比度增强
<5>当 0<α<1 时,输出图像的对比度减小
<6>当 α<0 时,原始图像暗区域变亮,亮区域变暗,图像求补

下面看具体的代码演示:

示例1:图像灰度上移变换

图像的所有灰度值上移 50,图像变得更白了。
注意:纯黑色对应的灰度值为 0,纯白色对应的灰度值为 255

import cv2
import numpy as np
from matplotlib import pyplot as plt

img=cv2.imread("lena.png")
grayImg=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#获取图像的高和宽
grayImg_height=grayImg.shape[0]
grayImg_width=grayImg.shape[1]

#创建新图像
newImg_move=np.zeros((grayImg_height,grayImg_width),np.uint8)#上移

#DB=DA+50 上移
for i in range(grayImg_height):
    for j in range(grayImg_width):
        if(int(grayImg[i,j]+50)>255):# 溢出判断
            gray=255
        else:
            gray=int(grayImg[i,j]+50)

        newImg_move[i,j]=np.uint8(gray)

plt.rcParams['font.sans-serif']=['SimHei']#解决中文乱码问题

#原始图像
img0=plt.subplot(1,2,1)
img0.set_title("原始图像")
plt.imshow(grayImg,cmap="gray")
plt.xticks([])
plt.yticks([])

# newImg_move 上移
img1=plt.subplot(1,2,2)
img1.set_title("灰色上移变换")
plt.imshow(newImg_move,cmap="gray")
plt.xticks([])
plt.yticks([])

plt.show()
cv2.waitKey(0)

运行结果:
在这里插入图片描述

示例2:图像对比度增强变换

import cv2
import numpy as np
from matplotlib import pyplot as plt

img=cv2.imread("lena.png")
grayImg=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#获取图像的高和宽
grayImg_height=grayImg.shape[0]
grayImg_width=grayImg.shape[1]

#创建新图像
newImg_increase=np.zeros((grayImg_height,grayImg_width),np.uint8)#对比度增强

# DB=DA*1.5 对比度增强
for i in range(grayImg_height):
    for j in 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值