一、DFS深度优先搜索的思想
深度优先遍历图的方法是,从图中某顶点v出发:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 当然,当人们刚刚掌握深度优先搜索的时候常常用它来走迷宫.事实上我们还有别的方法,那就是广度优先搜索(BFS).
二、排列数字
#include<iostream>
#include<cstdio>
using namespace std;
const int N=10;
int n;
int path[N];
bool st[N];
void dfs(int u)
{
if(u==n)
{
for(int i=0;i<n;i++) printf("%d ",path[i]);
puts("");
return;
}
for(int i=1;i<=n;i++)
{
if(!st[i])
{
path[u]=i;
st[i]=true;
dfs(u+1);
st[i]=false;
}
}
}
int main()
{
cin>>n;
dfs(0);
return 0;
}
三、n皇后
#include <iostream>
using namespace std;
const int N = 20;
// bool数组用来判断搜索的下一个位置是否可行
// col列,dg对角线,udg反对角线
// g[N][N]用来存路径
int n;
char g[N][N];
bool col[N], dg[N], udg[N];
void dfs(int u)
{
// u == n 表示已经搜了n行,故输出这条路径
if (u == n)
{
for (int i = 0; i < n; i ++ ) puts(g[i]); // 等价于cout << g[i] << endl;
puts(""); // 换行
return;
}
//对n个位置按行搜索
for (int i = 0; i < n; i ++ )
// 剪枝(对于不满足要求的点,不再继续往下搜索) udg[n - u + i],+n是为了保证大于0
if (!col[i] && !dg[u + i] && !udg[n - u + i])
{
g[u][i] = 'Q';
col[i] = dg[u + i] = udg[n - u + i] = true;
dfs(u + 1);
// 恢复现场 这步很关键
col[i] = dg[u + i] = udg[n - u + i] = false;
g[u][i] = '.';
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
g[i][j] = '.';
dfs(0);
return 0;
}