一、使用的工具为Visual Studio Code
相关快捷键:
1、文件操作
Ctrl + N:新建一个文件。当你需要创建一个新的脚本(如 Python 脚本用于数据分析)或者新的配置文件时可以使用。
Ctrl + O:打开一个文件。这可以用于打开已有的数据文件(如 CSV、JSON 等格式的数据文件)或者已有的代码文件。
Ctrl + S:保存文件。在编辑代码或者数据配置文件后及时保存。
Ctrl + Shift + S:另存为文件。如果需要将文件保存为不同的名称或者格式,可以使用这个快捷键。
2、编辑操作
Ctrl + X:剪切选中的文本。在调整代码结构或者移动数据相关内容时很有用。
Ctrl + C:复制选中的文本。例如复制一段数据分析代码或者数据字段的名称。
Ctrl + V:粘贴文本。
Ctrl + Z:撤销上一步操作。如果在编写代码或者修改数据相关内容时出错,可以撤销操作。
Ctrl + Y:恢复上一步撤销的操作。
Ctrl + F:在当前文件中查找文本。可以用于查找特定的代码关键字、变量名或者数据标签。例如,查找数据分析代码中特定函数的调用位置。
Ctrl + H:在当前文件中替换文本。比如替换代码中过时的变量名或者数据格式相关的术语。
3、代码导航与查看
Ctrl + Home:跳转到文件开头。在查看长代码文件或者大型数据配置文件时,可以快速回到开头。
Ctrl + End:跳转到文件末尾。
Ctrl + PageUp:切换到上一个打开的文件。当同时打开多个数据分析相关文件(如数据读取文件、数据清洗文件、可视化文件等)时可以方便地切换。
Ctrl + PageDown:切换到下一个打开的文件。
F12:跳转到定义。如果你的代码中引用了函数或者变量,按 F12 可以查看它们的定义位置。例如,查看数据分析函数的具体实现代码。
4、代码运行与调试(取决于所安装的插件)
F5:启动调试。在调试数据分析代码(如 Python 脚本中的数据处理逻辑错误)时使用。不同的编程语言可能需要进行相应的调试配置。
Shift + F5:停止调试。
Ctrl + F5:不调试直接运行程序。比如直接运行一个数据清洗或者数据分析的脚本。
5、插件相关(对于数据分析扩展很有用)
Ctrl + Shift + X:打开扩展视图。可以用于安装和管理与大数据分析相关的插件,如 Python 扩展、数据可视化扩展等。在这个视图中可以搜索、安装、更新和卸载插件。
二、分析思路:
我推测本次分析的目的是探究用户的各项信息与违约情况之间的关系。
我将从以下几个方面进行分析:
- 对不同特征进行描述性统计分析,了解其分布情况。
- 分析不同特征与违约情况之间的关系,使用相关性分析。
- 进行可视化展示,以便更直观地观察特征与违约情况之间的关系
在分析过程中,我将使用 Python 中的pandas库进行数据处理和分析,使用matplotlib和seaborn库进行数据可视化
2、实践代码:
1.引入所需的数据库(数据库下载:win+r 输入cmd 敲入pip install (数据库名))
2.读取数据,并用head(),info()查看一下数据
3.提取特征和目标变量
4.模型分析:逻辑回归
5.决策树
6.准确性
7.混淆矩阵
8.分类报告
三、分析结论:
对连续型变量进行描述性统计,发现负债率、信用卡债务和其他债务的标准差较大,说明这些变量的波动较大。
对离散型变量进行描述性统计,发现教育程度、工龄、居住时长和是否违约的频数和频率分布较为分散。
发现年龄、收入、负债率、信用卡债务和其他债务与是否违约之间存在一定的相关性。
综上所述,年龄、收入、负债率、信用卡债务和其他债务与是否违约之间存在一定的相关性,可以进一步分析这些变量与是否违约之间的关系,以提高信用评估的准确性。