- 博客(13)
- 收藏
- 关注
原创 相关类可视化图像总结
1. 散点图2. 气泡图3. 热力图4. 二维密度图各图表优劣势对比表在数据分析与可视化领域,理解变量间的相关性是揭示数据内在规律的关键。而相关类可视化图像则可以通过直观的图形语言,将数据关系转化为可感知的视觉模式,快速捕捉变量关联、分布特征及潜在趋势。无论是探索性数据分析、多维度信息展示,还是复杂数据分布建模,这些工具均能在不同场景中发挥独特作用,成为数据洞察的重要助力。本文所有的数据均来自kaggle的数据集。
2025-06-09 12:30:03
685
原创 数据可视化实验:数据可视化交互
本次实验围绕数据可视化交互展开,基于Python的Pyecharts库对全国城市空气质量数据进行多维度可视化分析。通过完成横向条形图对比AQI值、饼图展示等级分布、多选项卡仪表盘综合分析、2D及3D地理可视化等任务,实践了数据可视化的准确性、简洁性等核心原则,实现了从数据清洗、图表绘制到交互功能设计的完整流程,直观呈现了不同城市及区域的空气质量特征。实验过程中,既掌握了Pyecharts库的各类图表使用技巧(如通过颜色区分数据状态、添加标记线和点击事件),也体会到数据处理的严谨性对可视化效果的关键作用。
2025-05-20 11:56:45
1113
原创 地理特征类可视化图表总结
地理特征可视化作为连接空间数据与人类认知的桥梁,通过多元化的图表形态将抽象的地理信息转化为直观的视觉语言。在当今大数据时代,这类可视化工具不仅能够整合地形、气候、人口等多维数据,更能通过空间分布规律揭示地理要素的内在联系。例如,蜂窝热力地图通过六边形网格量化区域密度,有效解决数据重叠问题;变形地图以面积变形直观呈现经济权重;关联地图用动态线条刻画物流网络,而气泡地图则以大小与色彩的双重编码实现多维指标同步表达。这些图表共同构建了从宏观格局到微观机理的地理认知体系,为城市规划、环境监测等场景提供决策支撑。
2025-05-19 20:43:37
431
原创 数据可视化实验:文本数据可视化
本次重点探索了词云生成与文献指纹构造两种技术方法。通过处理中文歌词和古文文本,结合Python中的分词工具jieba、词云库WordCloud以及哈希算法库hashlib,实验实现了从文本信息提取到可视化呈现的全流程。在词云生成部分,实验以《千千阙歌》歌词为数据源,首先使用jieba进行精确分词,解决了中文文本因无空格分隔导致的词云生成难题。通过配置WordCloud参数,生成了直观展示歌词高频词汇的可视化词云图。在文献指纹构造部分,实验选取韩愈的《师说》作为分析对象。
2025-05-13 18:32:04
878
原创 时间趋势类可视化图像总结
时间序列数据是观察事物动态演变的核心载体,无论是追踪股价波动、分析企业盈利趋势,还是洞察气候变化规律,都需要借助可视化工具揭示其内在模式——趋势性、季节性与周期性。从基础的折线图到多维度的螺旋图,从量化增减的瀑布图到捕捉市场情绪的烛形图,每种图表都以独特视角解码时间密码。
2025-05-06 11:55:38
937
原创 数据可视化实验:关系数据可视化
本次以美国2005年各州犯罪率数据为基础,通过Python的seaborn、matplotlib和pyecharts库,探索了关系数据可视化的方法与应用。实验中,通过散点图、矩阵图、密度分布图等可视化手段,直观揭示了不同犯罪类型之间的关联性。散点图显示谋杀率与入室盗窃率存在一定正相关,而矩阵图展现了暴力犯罪与财产犯罪之间的潜在联系。同时,动态散点图的交互设计和横向条形图的对比分析,帮助快速识别高犯罪率区域,为数据解读提供了多维度视角。在技术实现中,实验重点解决了数据清洗与图表适配的问题。
2025-04-28 20:37:58
978
原创 分布类可视化图像总结
数据分布是统计分析的基础,而可视化则是揭示数据特征最直观的方式。直方图、密度图、箱线图和小提琴图等分布类可视化图像,能够帮助我们深入理解数据的集中趋势、离散程度和分布形状。这些图表各有特点,适用于不同的分析场景。
2025-04-15 11:55:34
833
原创 数据可视化实验:比例数据可视化(板块层级图)
本次实验围绕数据可视化中的比例数据展示展开,重点学习了如何通过板块层级图直观呈现树状结构数据的分布关系。实验以Python为工具,结合pandas、matplotlib和squarify等库,从数据读取、处理到可视化逐步实现。通过merge函数对数据进行整合匹配,利用归一化方法将商品数量映射为颜色深浅,并以通道数量决定矩形面积大小,最终通过squarify库绘制出层次分明的板块层级图。
2025-04-14 20:37:03
1089
原创 局部与整体类可视化图像总结
韦恩图:突出集合间的关系,适合交集分析。饼图与环形图:强调分类数据的比例,适合简单或多层比例展示。旭日图与圆堆积图:擅长呈现层次结构数据,适合复杂数据集。根据数据的特性和展示目标选择合适的图表,能更有效地传递信息。总结对比表图表类型适用场景优势劣势韦恩图集合间逻辑关系(交集/并集)直观展示交集,逻辑清晰集合过多时可读性差,无定量数据饼图整体与部分比例(少量类别)简单直观,强调占比类别过多时混乱,无法展示趋势环形图多组分布对比空间高效,支持多组叠加环过多时干扰大,依赖颜色区分旭日图。
2025-04-02 18:26:55
798
原创 数据可视化实验:时间数据的可视化
本次实验借助Python编程语言与pyecharts库,成功实现了时间数据的可视化,顺利绘制出堆叠柱形图与。在实验进程中,我们深入探究了时间数据于大数据领域的广泛应用场景,以及其可视化呈现的重要意义。堆叠柱形图,适用于展示含有子分类,且子分类总和具备实际意义的数据;另一张图则擅长对比相近数值,或用于呈现周期性时间概念。不过,若要展示随时间变化的趋势,折线图凭借其清晰直观的趋势线条,会是更为适宜的选择。
2025-03-31 23:46:56
680
原创 比较与排序类可视化图像总结
柱状图:用柱子展示数据量,适合比较类别数据,如销量或收入,样式灵活。环形柱状图:柱子环绕圆心,突出周期性数据,如一周活动时长,视觉吸引。子弹图:紧凑显示实际值与目标值,适合监控指标,如销售目标,样式可调。哑铃图:点和线展示两点差异,适合比较变化,如工资差距,样式自定。雷达图:展示多维数据,适合比较多属性,如技能评估,视觉独特。平行坐标图:展示高维数据,易识模式与异常,适合多变量分析,如汽车性能。词云图:显示关键词,大小依频率,适合文本分析,如社交媒体评论。
2025-03-22 22:39:48
631
2
原创 数据可视化基础实验:D3数据可视化
D3 总共提供了12个布局:饼状图(Pie)、力导向图(Force)、弦图(Chord)、树状图(Tree)、集群图(Cluster)、捆图(Bundle)、打包图(Pack)、直方图(Histogram)、分区图(Partition)、堆栈图(Stack)、矩阵树图(Treemap)、层级图(Hierarchy)。D3 的全称是(Data-Driven Documents),是一个被数据驱动的文档,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可视化的。再对每个 元素,添加。
2025-03-15 16:07:13
1075
原创 数据可视化基础实验:Tableau可视化入门
这次用Tableau做数据可视化实验收获很大。软件界面友好,仅凭直觉般的拖拽就能生成图表,对新手十分友好。连接数据的功能也很方便,适合处理不同格式的数据。而在制作条形图、气泡图这些图表时,我能感觉到Tableau的图表类型十分多样。尤其是填充地球图,几步就能把数据按地区展示出来,对分析区域差异特别有用。做仪表板整合多个图表使数据展示更清晰了,不同维度的数据对比起来也方便。不过实验里也遇到了问题,比如调整数据类型和设置筛选条件,得反复检查才能保证准确。这让我意识到,除了会用软件,理解数据本身也很重要。
2025-03-15 16:06:38
628
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人