1)栈的英文为(stack)
2)栈是一个先入后出(FILO-First In Last Out)的有序列表。
3)栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的一种特殊线性表。允许插入和删除的一端,为变化的一端,称为栈顶(Top), 另一端为固定的一端,称为栈底(Bottom)。
4)根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在栈顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除
栈的应用场景
1)子程序的调用:在跳往子程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。return
2)处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数、区域变量等数据存入堆栈中。
3)表达式的转换[中缀表达式转后綴表达式]与求值(实际解决)。
4)二叉树的遍历。
5)图形的深度优先(depth- first)搜索法 。
实现栈的思路分析
1.使用数组来模拟栈
2.定义一个top来表示栈顶,初始化为-1
3.入栈的操作,当有数据加入到找时,top++; stack[top]= data;
4.出栈的操作,int value= stack[topl; top- returnvaluel
package com.linkedlist;
import java.util.Scanner;
public class ArrayStackDemo {
public static void main(String[] args) {
ArrayStack a = new ArrayStack(50);
String key = "";
boolean loop = true;//控制是否退出菜单
Scanner scanner = new Scanner(System.in);
while(loop) {
System.out.println("show: 显示栈");
System.out.println("exit: 退出程序");
System.out.println("push:添加数据到栈");
System.out.println("pop: 取出数据");
key = scanner.next();
switch(key) {
case "show":
a.list();
break;
case "push":
System.out.println("输入添加的值");
int value = scanner.nextInt();
a.push(value);
break;
case "pop":
try {
int res = a.pop();
System.out.println("取出的数据值为"+res);
}catch(Exception e){
System.out.println(e.getMessage());
}
break;
case "exit":
scanner.close();
loop = false;
System.out.println("程序退出");
break;
}
}
}
}
class ArrayStack{
private int maxSize;//栈的大小
private int[] stack;//数组模拟栈
private int top = -1;//top表示栈顶 初始化为-1
public ArrayStack(int maxSize) {
this.maxSize = maxSize;
stack = new int[maxSize];
}
//栈满
public boolean isFull() {
return top == maxSize-1;
}
public boolean isEmpty() {
return top == -1;
}
//入栈 push
public void push(int value) {
if(isFull()) {
System.out.println("栈满");
}
top++;
stack[top] = value;
}
//出栈
public int pop() {
if(isEmpty()) {
//抛出异常
throw new RuntimeException("栈空无数据");
}
int value = stack[top];
top--;
return value;
}
//遍历栈 需要从栈顶开始到栈底
public void list() {
if(isEmpty()) {
//抛出异常
System.out.println("栈空无数据");
return;
}
for(int i=top;i>=0; i--) {
System.out.println("stack"+i+": "+stack[i]);
}
}
}