编译原理 消除左递归

转自:http://guanjy0129.blog.163.com/blog/static/111549445201061491810507/

一个文法含有下列形式的产生式之一时:

1)A→Aβ,A∈VN,β∈V*

2)A→Bβ,B→Aα,A、B∈VN,α、β∈V*

则称该文法是左递归的。

然而,一个文法是左递归时,不能采取自顶向下分析法。

消除左递归方法有:

a)把直接左递归改写为右递归:

设有文法产生式:A→Aβ|γ。其中β非空,γ不以A打头。

可写为:A→γA'

A'→βA'|ε

一般情况下,假定关于A的产生式是:

A→Aα1| Aα|… |Aαm12 |n

其中,αi(1≤i≤m)均不为空,βj(1≤j≤n)均不以A打头。

则消除直接左递归后改写为:

A→ β1A'| β2 A' || βnA'

A'→ α1A' | α2A' || αmA' |ε

例4.12:有文法G(E):

E→E +T |T

T→T*F | F

F→i| (E)

消除该文法的直接左递归。

解:按转换规则,可得:

E→TE'

E'→+TE'|ε

T→FT '

T'→*FT'|ε

F→i| (E)

b)消除间接左递归:

对于间接左递归的消除需要先将间接左递归变为直接左递归,然后再按a)清除左递归。

例4.13:以文法G6为例消除左递归:

(1)A→aB

(2)A→Bb

(3)B→Ac

(4)B→d

解:用产生式(1),(2)的右部代替产生式(3)中的非终结A得到左部为B的产生式:

(1)B→aBc

(2)B→Bbc

(3)B→d

消除左递归后得到:

B→aBcB' |dB'

B'→bcB' |ε

再把原来其余的产生式A→aB,A→Bb加入,最终得到等价文法为:

(1) A→aB

(2) A→Bb

(3) B→(aBc|d)B'

(4) B'→bcB'|ε

c)消除文法中一切左递归的算法

设非终结符按某种规则排序为A1,A2,An

For i﹕=1 to n do

begin

For j﹕=1 to i-1 do

begin

若Aj的所有产生式为:

Aj →δ1| δ2 | … | δn

替换形如Ai → Aj γ的产生式为:

Ai →δ1γ 2γ | … |δnγ

end

消除Ai中的一切直接左递归

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值