LCS(最长公共子序列)算法及其优化

经典算法

求解 L C S LCS LCS(最长公共子序列)时,一般采用动态规划的方法。

例:有 s t r n strn strn s t r m strm strm两个序列,设 D P DP DP方程 f [ i ] [ j ] f[i][j] f[i][j]表示 s t r n strn strn的前 i i i位与 s t r m strm strm的前 j j j位的LCS长度,转移方程如下: s t r n [ i ] = = s t r m [ j ] : f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + 1 strn[i]==strm[j]:f[i][j]=f[i-1][j-1] +1 strn[i]==strm[j]:f[i][j]=f[i1][j1]+1
s t r n [ i ] ! = s t r m [ j ] : f [ i ] [ j ] = m a x ( f [ i ] [ j − 1 ] , f [ i − 1 ] [ j ] ) strn[i]!=strm[j]:f[i][j]=max(f[i][j-1],f[i-1][j]) strn[i]!=strm[j]:f[i][j]=max(f[i][j1],f[i1][j])

注意:上述两者可以相互独立,即当两字符相等的时候只进行第一步即可。

证明: f [ i − 1 ] [ j − 1 ] + 1 > = m a x ( f [ i ] [ j − 1 ] , f [ i − 1 ] [ j ] ) f[i-1][j-1]+1>=max(f[i][j-1],f[i-1][j]) f[i1][j1]+1>=max(f[i][j1],f[i1][j])必定成立。

时间复杂度: O ( n m ) O(nm) O(nm)
空间复杂度: O ( n m ) O(nm) O(nm)

for( int i = 0; i < len_n; i++ )
{
    for( int j = 0; j < len_m; j++)
    {
        if(strn[i] == strm[j])
        {
            f[i][j] = f[i-1][j-1] + 1; 
        }
        else 
        {
            f[i][j] = max(f[i-1][j], f[i][j-1]);
        }
    }
}

输出所有的 L C S LCS LCS

要想输出所有的 L C S LCS LCS,我们需要知道对于 i , j i,j i,j阶段的 L C S LCS LCS是由哪里转移而来的,因此需要逆向查找,从而通过递归求出 L C S LCS LCS的转移路径。

设递归函数为 f i n d L C S ( i , j , s t r ) findLCS(i,j,str) findLCS(i,j,str),其中 s t r str str代表着当前存储的 L C S LCS LCS

转移种类有:

  1. s t r n [ i ] = = s t r m [ j ] strn[i]==strm[j] strn[i]==strm[j],则该阶段一定可以作为一个字符存进 s t r str str中(因为递归是逆向递归,所以现在的选择不会影响之前的选择及方案)
  2. s t r n [ i ] ! = s t r m [ j ]   a n d   d p [ i − 1 ] [ j ] < d p [ i ] [ j − 1 ] strn[i]!=strm[j] \space and \space dp[i-1][j] < dp[i][j-1] strn[i]!=strm[j] and dp[i1][j]<dp[i][j1] ,则由 i − 1 , j i-1,j i1,j转移而来,递归 f i n d L C S ( i − 1 , j , s t r ) findLCS(i-1,j,str) findLCS(i1,j,str)
  3. 当大于号同理
  4. 如果两个相等,则说明可以从两边转移而来,因此需要有两个递归分支

记得在 i , j i,j i,j到达起点后把 s t r str str存进答案中。

set<string> answer;

void findLCS(int i, int j, string str)
{
	while (i>0 && j>0)
	{
		if (strn[i-1] == strm[j-1])
		{
			str.push_back(strn[i-1]);
			--i;
			--j;
		}
		else
		{
			if (dp[i-1][j] > dp[i][j-1])
				--i;
			else if (dp[i-1][j] < dp[i][j-1])
				--j;
			else   
			{
				findLCS(i-1, j, str);
				findLCS(i, j-1, str);
				return;
			}
		}
	}
  
	answer.insert(Reverse(lcs_str));
}

注意:如果只要求输出其中一个最优解,就只需要把 w h i l e while while去掉,然后把每一个 i f if if条件判断语句里都加上递归入口,去掉 i − − i-- i j − − j-- j

空间复杂度优化

注意到转移时只与 f [ i − 1 ] [ j − 1 ] 、 f [ i − 1 ] [ j ] 、 f [ i ] [ j − 1 ] f[i-1][j-1]、f[i-1][j]、f[i][j-1] f[i1][j1]f[i1][j]f[i][j1]有关,因此可以尝试滚动数组优化。

d p [ j ] dp[j] dp[j]代表当前循环到 s t r n strn strn的第 i i i个字符时的答案构成的数组。
在更新 d p [ j ] dp[j] dp[j]时,即是对应经典算法中的 d p [ i ] [ j ] dp[i][j] dp[i][j],则此时 d p [ j ] dp[j] dp[j]中保留的数据应该是 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j],而 d p [ j − 1 ] dp[j-1] dp[j1]保留的数据是 d p [ i ] [ j − 1 ] dp[i][j-1] dp[i][j1]
那么应该如何获得 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1]呢?
可以开一个临时变量 t e m p temp temp,保留每一次更新前的 d p [ j ] dp[j] dp[j](相当于 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j]),则当循环进行到第 j + 1 j+1 j+1个字符时, t e m p temp temp内保留的数据就相当于我们要求的 d p [ i ] [ j ] dp[i][j] dp[i][j],故问题得到了解决。

代码如下:

for (i = 0; i < len_n; i++)
{
    temp = 0;
    for (j = 0; j < len_m; j++)
    {
        now_val = dp[j];//now_val代表dp[i-1][j]的值
        if (strn[i] == strm[j])
            dp[j] = temp + 1;//代表dp[i-1][j-1]+1
        else
            dp[j] = max(dp[j - 1], dp[j]);//dp[j-1]代表dp[i][j-1]
        temp = now_val;//保留dp[i-1][j]的值
    }
}

空间复杂度: O ( n ) O(n) O(n)

时间复杂度优化

适用条件:序列中重复元素较少,最好为排列

思路:考虑每一个出现在 s t r n strn strn的字符,在 s t r m strm strm中找到其出现的所有位置并加以分类降序储存在数组中。再把每一个字符对应的坐标按照对应字符在 s t r n strn strn中出现的下标**顺序排列成一个新序列 M M M,则 M M M的LIS(最长上升子序列)即是所求答案。

例:

strn=abscsa
strm=adbsccab

则
a在strm的坐标为06
b在strm的坐标为27
s在strm的坐标为3
c在strm的坐标为45

则序列M为

6 0 7 2 3 5 4 3 6 0

LIS长度为5
故LCS长度为5

t i p s : tips: tips:

  1. 正确性:求出 M M M的最长上升子序列保证了这些字符在 s t r m strm strm中升序出现,又因为这些字符是按照在 s t r n strn strn中的坐标升序排列的,故为两者的 L C S LCS LCS
  2. 选择降序排列坐标数组:防止同一个位置的字符被多次选取计算。
  3. 如何在 O ( n ) O(n) O(n)时间内得到坐标数组:使用链表或者动态数组
void solve(char *str1, char *str2)
{
    len_n = strlen(str1), len_m = strlen(str2);
    for(int i = 0; i < len_n; i++)
    {
        inv[str1[i] - ' '] = true;
        head[str1[i] - ' '] = -1;
    }
    for(int i = 0; i < len_m; i++)
    {
        if(inv[str2[i] - ' ']) 
        {   
            next[i] = head[str2[i] - ' '];
            head[str2[i] - ' '] = i;   
        }
    }
    for(int i = 0; i < len_n; i++)
    {
        int now_pos = head[str1[i] - ' '];
        while (now_pos != -1)
        {
            str[str_len++] = now_pos;//同时实现了降序排序的要求
            now_pos = next[now_pos];
        }
    }
}

上述代码实现了构造序列 M M M(即是代码中的 s t r str str)的任务。

时间复杂度:对于没有重复元素的序列,时间复杂度为 O ( n ) O(n) O(n),随序列中元素重复度升高而升高,最坏可以为 O ( n 2 ) O(n^2) O(n2),即整个序列只有一种元素。

求解 L I S LIS LIS可以使用树状数组优化,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

因此总复杂度较好情况下为 O ( n l o g n ) O(nlogn) O(nlogn)

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值