超级赛亚ACMer
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2284 Accepted Submission(s): 613
Problem Description
百小度是一个ACMer,也是一个超级赛亚人,每个ACMer都有一个战斗力,包括百小度。
所谓超级赛亚人的定义,是说如果在对抗中刚好接近极限状态,那就会激发斗志,实力提升.
具体来说,就是百小度现在要接受一些ACMer的挑战了,这些ACMer有n个人,第i个人的战斗力是a[i]。

百小度接下来可以自主安排与这n个ACMer的PK顺序,他要想在PK赛中赢过另外一个ACMer,就必须使得自己的战斗力不小于对方(平局情况他会按照百小度字典上的规则把自己排在第一).
如果百小度的战斗力大于对方,那么百小度就会轻易获胜,得不到锻炼并且骄傲起来,他以后的战斗力将保持在这个值,再也不会发生改变。
如果百小度的战斗力等于对方,那么百小度在获胜的同时也会感到很吃力,但是这会激发百小度的斗志,使得他刻苦刷题,在下场PK赛之前,战斗力最多提升k点(即可以提升0~k点任意值).
k是百小度的潜力提升上限,会被给定一个初始值,这个潜力提升上限k在后面的比赛中会下降.
每战胜一个ACMer,这个潜力上限k将减少1(因为超级赛亚人百小度也会感到累),但k最低只会减少到0,即不会出现战斗力下降的情况。也就是第一次比赛如果激发了百小度的斗志,他能把战斗力提升0~k的任一值,如果第二次比赛继续被激发斗志,他能在第一次提升后的基础上,把战斗力再提升 0 ~ max(0,k−1) ,依次类推…
m是百小度的初始战斗力上限,也就是百小度第一次进行PK赛的时候,可以选择0~m的任意一个值作为他的战斗力.
现在希望你编写程序,判断一下百小度是否战胜所有的ACMer.
具体来说,就是百小度现在要接受一些ACMer的挑战了,这些ACMer有n个人,第i个人的战斗力是a[i]。

百小度接下来可以自主安排与这n个ACMer的PK顺序,他要想在PK赛中赢过另外一个ACMer,就必须使得自己的战斗力不小于对方(平局情况他会按照百小度字典上的规则把自己排在第一).
如果百小度的战斗力大于对方,那么百小度就会轻易获胜,得不到锻炼并且骄傲起来,他以后的战斗力将保持在这个值,再也不会发生改变。
如果百小度的战斗力等于对方,那么百小度在获胜的同时也会感到很吃力,但是这会激发百小度的斗志,使得他刻苦刷题,在下场PK赛之前,战斗力最多提升k点(即可以提升0~k点任意值).
k是百小度的潜力提升上限,会被给定一个初始值,这个潜力提升上限k在后面的比赛中会下降.
每战胜一个ACMer,这个潜力上限k将减少1(因为超级赛亚人百小度也会感到累),但k最低只会减少到0,即不会出现战斗力下降的情况。也就是第一次比赛如果激发了百小度的斗志,他能把战斗力提升0~k的任一值,如果第二次比赛继续被激发斗志,他能在第一次提升后的基础上,把战斗力再提升 0 ~ max(0,k−1) ,依次类推…
m是百小度的初始战斗力上限,也就是百小度第一次进行PK赛的时候,可以选择0~m的任意一个值作为他的战斗力.
现在希望你编写程序,判断一下百小度是否战胜所有的ACMer.
Input
输入包含多组数据(数据不超过500组)
第一行一个整数T,表示T组数据
对于每组数据,第一行包括三个整数 n,m,k(1≤n≤104,1≤m,k≤108)
第二行包括n个正整数,表示彪形大汉的战斗力(战斗力为不超过 1012 的正整数)
第一行一个整数T,表示T组数据
对于每组数据,第一行包括三个整数 n,m,k(1≤n≤104,1≤m,k≤108)
第二行包括n个正整数,表示彪形大汉的战斗力(战斗力为不超过 1012 的正整数)
Output
对于每组数据,先输出一行Case #i:
(1≤i≤T)
如果百小度能打败所有的ACMer,再输出"why am I so diao?"
否则再输出"madan!"
如果百小度能打败所有的ACMer,再输出"why am I so diao?"
否则再输出"madan!"
Sample Input
2 5 11 3 15 13 10 9 8 5 11 3 8 9 10 13 16
Sample Output
Case #1: why am I so diao? Case #2: madan!Hint第一组样例解释 5个ACMer,初始战斗力选择范围是[0,11],接下来每场战斗力提升上限是3,2,1,0,0,...,0 百小度首先使得自己的初始战斗力为10,打败战斗力为10的第一个ACMer, 然后选择战斗力提升3,变成13,打败战斗力为13的第二个ACMer, 然后选择战斗力提升2,变成15,打败战斗力为15的第三个ACMer, 之后再以任意顺序打败剩下的ACMer
Source
该题目是非常典型的dp题目了,实质上就是看最终能不能到达最大值,因而到达第i个的实力就要尽可能使之前跳跃次数最少,这样可以为后面的提升腾出机会。
状态转移方程dp[i] = min(dp[j]+1),其中j满足条件a[j] + max(0, k - dp[j]) >= a[i]
程序一开始死活都是超时,太郁闷了,后来发现C++方式提交就过了,搞不懂为啥C++比G++执行更快,真是madan!耽误了半个多小时
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define max(x, y) ((x) > (y) ? (x) : (y))
#define min(x, y) ((x) < (y) ? (x) : (y))
#define N 10010
#define MAX_NUM 0x0fffffff
int dp[N];
long long val[N];
long long n, m, k;
void Solve()
{
sort(val, val + n);
int t = 0;
for (t = 0; t < n && val[t] <= m; ++t)
{
dp[t] = 0;
}
if (t == 0)
{
printf("madan!\n");
return;
}
for (int i = t; i < n; ++i)
{
if (i > 0 && val[i] == val[i-1])
{
dp[i] = dp[i-1];
continue;
}
int v = MAX_NUM;
for (int j = i - 1; j >= 0 && val[i] - val[j] <= k; --j)
{
if (dp[j] != -1 && val[j] + max(0, k - dp[j]) >= val[i])
{
v = min(v, dp[j] + 1);
}
}
if (v != MAX_NUM)
{
dp[i] = v;
}
}
if (dp[n-1] != -1)
{
printf("why am I so diao?\n");
}
else
{
printf("madan!\n");
}
}
int main()
{
//freopen("input.txt", "r", stdin);
int times;
scanf("%d", ×);
for (int i = 1; i <= times; ++i)
{
printf("Case #%d:\n", i);
memset(dp, -1, sizeof(val));
scanf("%d %d %d", &n, &m, &k);
for (int i = 0; i < n; ++i)
{
scanf("%lld", &val[i]);
}
Solve();
}
return 0;
}