hdu 5246 超级赛亚ACMer-2015年百度之星程序设计大赛 - 初赛(1)

超级赛亚ACMer

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2284    Accepted Submission(s): 613


Problem Description
百小度是一个ACMer,也是一个超级赛亚人,每个ACMer都有一个战斗力,包括百小度。
所谓超级赛亚人的定义,是说如果在对抗中刚好接近极限状态,那就会激发斗志,实力提升.

具体来说,就是百小度现在要接受一些ACMer的挑战了,这些ACMer有n个人,第i个人的战斗力是a[i]。


百小度接下来可以自主安排与这n个ACMer的PK顺序,他要想在PK赛中赢过另外一个ACMer,就必须使得自己的战斗力不小于对方(平局情况他会按照百小度字典上的规则把自己排在第一).

如果百小度的战斗力大于对方,那么百小度就会轻易获胜,得不到锻炼并且骄傲起来,他以后的战斗力将保持在这个值,再也不会发生改变。
如果百小度的战斗力等于对方,那么百小度在获胜的同时也会感到很吃力,但是这会激发百小度的斗志,使得他刻苦刷题,在下场PK赛之前,战斗力最多提升k点(即可以提升0~k点任意值).

k是百小度的潜力提升上限,会被给定一个初始值,这个潜力提升上限k在后面的比赛中会下降.

每战胜一个ACMer,这个潜力上限k将减少1(因为超级赛亚人百小度也会感到累),但k最低只会减少到0,即不会出现战斗力下降的情况。也就是第一次比赛如果激发了百小度的斗志,他能把战斗力提升0~k的任一值,如果第二次比赛继续被激发斗志,他能在第一次提升后的基础上,把战斗力再提升 0  ~  max(0,k1) ,依次类推…

m是百小度的初始战斗力上限,也就是百小度第一次进行PK赛的时候,可以选择0~m的任意一个值作为他的战斗力.

现在希望你编写程序,判断一下百小度是否战胜所有的ACMer.
 

Input
输入包含多组数据(数据不超过500组)

第一行一个整数T,表示T组数据

对于每组数据,第一行包括三个整数 n,m,k(1n104,1m,k108)

第二行包括n个正整数,表示彪形大汉的战斗力(战斗力为不超过 1012 的正整数)
 

Output
对于每组数据,先输出一行Case #i:  (1iT)

如果百小度能打败所有的ACMer,再输出"why am I so diao?"

否则再输出"madan!"
 

Sample Input
  
  
2 5 11 3 15 13 10 9 8 5 11 3 8 9 10 13 16
 

Sample Output
  
  
Case #1: why am I so diao? Case #2: madan!
Hint
第一组样例解释 5个ACMer,初始战斗力选择范围是[0,11],接下来每场战斗力提升上限是3,2,1,0,0,...,0 百小度首先使得自己的初始战斗力为10,打败战斗力为10的第一个ACMer, 然后选择战斗力提升3,变成13,打败战斗力为13的第二个ACMer, 然后选择战斗力提升2,变成15,打败战斗力为15的第三个ACMer, 之后再以任意顺序打败剩下的ACMer
 

Source



该题目是非常典型的dp题目了,实质上就是看最终能不能到达最大值,因而到达第i个的实力就要尽可能使之前跳跃次数最少,这样可以为后面的提升腾出机会。
状态转移方程dp[i] = min(dp[j]+1),其中j满足条件a[j] + max(0, k - dp[j]) >= a[i]
程序一开始死活都是超时,太郁闷了,后来发现C++方式提交就过了,搞不懂为啥C++比G++执行更快,真是madan!耽误了半个多小时

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define max(x, y) ((x) > (y) ? (x) : (y))
#define min(x, y) ((x) < (y) ? (x) : (y))

#define N 10010
#define MAX_NUM 0x0fffffff
int dp[N];
long long val[N];
long long n, m, k;

void Solve()
{
    sort(val, val + n);
    int t = 0;
    for (t = 0; t < n && val[t] <= m; ++t)
    {
        dp[t] = 0;
    }

    if (t == 0)
    {
        printf("madan!\n");
        return;
    }

    for (int i = t; i < n; ++i)
    {
        if (i > 0 && val[i] == val[i-1])
        {
            dp[i] = dp[i-1];
            continue;
        }

        int v = MAX_NUM;
        for (int j = i - 1; j >= 0 && val[i] - val[j] <= k; --j)
        {
            if (dp[j] != -1 && val[j] + max(0, k - dp[j]) >= val[i])
            {
                v = min(v, dp[j] + 1);
            }
        }
        if (v != MAX_NUM)
        {
            dp[i] = v;
        }
    }

    if (dp[n-1] != -1)
    {
        printf("why am I so diao?\n");
    }
    else
    {
        printf("madan!\n");
    }
}

int main()
{
    //freopen("input.txt", "r", stdin);

    int times;
    scanf("%d", ×);

    for (int i = 1; i <= times; ++i)
    {
        printf("Case #%d:\n", i);
        memset(dp, -1, sizeof(val));
        scanf("%d %d %d", &n, &m, &k);
        for (int i = 0; i < n; ++i)
        {
            scanf("%lld", &val[i]);
        }
        Solve();
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值