活动报名 | AlphaTensor一作亲讲:通过强化学习发现更快的矩阵乘法算法

AlphaTensor作者将在2022年12月2日分享如何使用强化学习改进矩阵运算效率,特别是4×4矩阵领域的Strassen算法。研究已登Nature封面,讲座将揭示科学人工智能在数学领域的应用实例。
摘要由CSDN通过智能技术生成

由智源社区主办的「智源Live 第28期丨AlphaTensor作者亲讲:通过强化学习发现更快的矩阵乘法算法」将于2022年12月2日下午17:00在线举办,敬请期待。

时间:2022年12月2日(周五)下午17:00-18:00

形式:线上直播

1c83786375d0dadcde092d4a10000022.png

01

报告简介

本次报告中,Alhussein Fawzi博士将介绍基于AlphaZero的深度强化学习方法,名为AlphaTensor,用于发现高效且可证明正确的任意矩阵乘法算法。AlphaTensor经过训练可以玩单人游戏,目标是在有限因子空间内找到张量分解。AlphaTensor发现的算法对于许多矩阵规模来说都优于最先进的复杂性。特别相关的是有限域中的4×4矩阵的情况,AlphaTensor的算法自50年前以来首次改进了Strassen的二级算法。目前该研究已登上Nature封面。

09eb143ace8ed6d394f4bcb2383ae2c3.jpeg

02

嘉宾介绍

f4feee6825d25b670c76adcf2c23659f.png

Fawzi博士是DeepMind的研究科学家。他于2016年从洛桑联邦理工学院(EPFL)信号处理实验室获得了博士学位。2012年他获得了EPFL电气工程学士学位。他在2013-2014和2015-2016学年获得了IBM博士奖学金(IBM PhD Fellowship awards)。目前Fawzi博士从事的是科学人工智能方面的工作,尤其是使用机器学习来解锁数学领域的新成果。同时,他对机器学习系统的可靠性也很感兴趣,尤其是计算机视觉方面。

03

报名方式

0e4c08259ed9519ee89163010a6d5bfe.png

点击下方“查看原文”或扫码进入报名页面

扫描下方二维码,根据提示申请加入兴趣交流群,与领域内海内外专家、从业者及各大高校学生交流讨论,建立联系;自由表达观点,探讨前沿课题,共享学科前沿资料信息。

61f06defdd19126242c51ff5ae906499.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值